
Programming 2: OOP Revision (Lecture 2)
Inheritance & Polymorphism

Comp 201

Forman Christian University

Today’s Agenda

1 Quick Recap: Classes & Objects
2 Inheritance
3 Polymorphism
4 Abstract Base Classes
5 Summary: OOP Advantages

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 2 / 56

Quick Recap

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 3 / 56

Abstraction

x y

get_x

make_point

get_y

distance

is_within_circle

Encapsulation

x y

get_x

make_point

get_y

distance

is_within_circle

Can't get in
:'-(

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 4 / 56

Abstraction

x y

get_x

make_point

get_y

distance

is_within_circle

Encapsulation

x y

get_x

make_point

get_y

distance

is_within_circle

Can't get in
:'-(

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 4 / 56

Inheritance

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 5 / 56

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 6 / 56

Inheritance: Parent Class
1 class Animal(object):

2 def __init__(self , age):

3 self.age = age

4 self.name = None

5 def get_age(self):

6 return self.age

7 def get_name(self):

8 return self.name

9 def set_age(self , newage):

10 self.age = newage

11 def set_name(self , newname=""):

12 self.name = newname

13 def __str__(self):

14 return f’animal :{self.name}-{self.age}’

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 7 / 56

Inheritance: Parent Class
1 class Animal(object):

2 def __init__(self , age):

3 self.age = age

4 self.name = None

5 def get_age(self):

6 return self.age

7 def get_name(self):

8 return self.name

9 def set_age(self , newage):

10 self.age = newage

11 def set_name(self , newname=""):

12 self.name = newname

13 def __str__(self):

14 return f’animal :{self.name}-{self.age}’

object is the parent class of
all classes in Python

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 7 / 56

Subclass Cat

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4 def __str__(self):

5 return f’cat:{self.name}-{self.age}’

6

7 c = Cat (2)

8 c.set_name(’simba ’)

9 print(c)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 8 / 56

Subclass Cat

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4 def __str__(self):

5 return f’cat:{self.name}-{self.age}’

6

7 c = Cat (2)

8 c.set_name(’simba ’)

9 print(c)

Inherits all attributes
and methods from the
Animal class

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 8 / 56

Subclass Cat

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4 def __str__(self):

5 return f’cat:{self.name}-{self.age}’

6

7 c = Cat (2)

8 c.set_name(’simba ’)

9 print(c)

Add new functionality.
Not present in the par-
ent class

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 8 / 56

Subclass Cat

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4 def __str__(self):

5 return f’cat:{self.name}-{self.age}’

6

7 c = Cat (2)

8 c.set_name(’simba ’)

9 print(c)

”Override” str , replacing
parent’s method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 8 / 56

Subclass Cat

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4 def __str__(self):

5 return f’cat:{self.name}-{self.age}’

6

7 c = Cat (2)

8 c.set_name(’simba ’)

9 print(c)

init is not missing, uses
the Animal version

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 8 / 56

Big Idea

Override a method: Create a new
method in the child class but with same

name as in the parent class.

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 9 / 56

Can’t use child class Methods

1 a = Animal (1)

2 c = Cat(2) # Child CAN use parent ’s methods:

3 # (__init__)

4 c.speak() # meow

5 a.speak() # ERROR: parent can NOT use

6 # child’s methods or attributes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 10 / 56

Which Method to Use?

Subclass can have methods with same name as superclass
(method override)

For an instance of a class, look for a method name in current class
definition

If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

Use first method up the hierarchy that you found with that method
name

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 11 / 56

Which Method to Use?

Subclass can have methods with same name as superclass
(method override)

For an instance of a class, look for a method name in current class
definition

If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

Use first method up the hierarchy that you found with that method
name

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 11 / 56

Which Method to Use?

Subclass can have methods with same name as superclass
(method override)

For an instance of a class, look for a method name in current class
definition

If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

Use first method up the hierarchy that you found with that method
name

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 11 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Parent is the Animal

class

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Note: Person class
overrides init

method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Due to overriding,
Animal’s init

method will not be
called automatically

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Person class has addi-
tional attributes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Person class has
additional methods

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

Subclass Person
1 class Person(Animal):

2 def __init__(self , name , age):

3 Animal.__init__(self , age)

4 self.set_name(name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self , fname):

9 if fname not in self.friends:

10 self.friends.append(fname)

11 def speak(self):

12 print("hello")

13 def age_diff(self , other):

14 diff = self.age - other.age

15 print(abs(diff), "year difference")

16 def __str__(self):

17 return f’person :{self.name}-{self.age}’

Person class overrides
str method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 12 / 56

You Try!
Write a function according to the following specification:

1 def make_pets(d):

2 ’’’ Input: d is a dict mapping a Person obj to a Cat obj

3 Prints: on each line , the name of a person , a colon , and the

4 name of that person ’s cat

5 Output: None ’’’

6 pass

7

8 p1 = Person("zaid", 54)

9 p2 = Person("ahmed", 38)

10 c1 = Cat (1)

11 c1.set_name("simba")

12 c2 = Cat (1)

13 c2.set_name("tom")

14 d = {p1:c1, p2:c2}

15 make_pets(d) # prints zaid:simba

16 # ahmed:tom

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 13 / 56

Big Idea

A subclass can use a parent’s attributes,
override a parent’s attributes, or define

new attributes.

Attributes are either data or methods.

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 14 / 56

1 import random

2 class Student(Person):

3 def __init__(self , name , age , major=None):

4 Person.__init__(self , name , age)

5 self.major = major

6 def change_major(self , major):

7 self.major = major

8 def speak(self):

9 r = random.random ()

10 if r < 0.25:

11 print("i have homework")

12 elif 0.25 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person :{self.name}-{self.age}-{self.major}’

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 15 / 56

1 import random

2 class Student(Person):

3 def __init__(self , name , age , major=None):

4 Person.__init__(self , name , age)

5 self.major = major

6 def change_major(self , major):

7 self.major = major

8 def speak(self):

9 r = random.random ()

10 if r < 0.25:

11 print("i have homework")

12 elif 0.25 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person :{self.name}-{self.age}-{self.major}’

Student inherits both
Person and Animal
attributes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 15 / 56

1 import random

2 class Student(Person):

3 def __init__(self , name , age , major=None):

4 Person.__init__(self , name , age)

5 self.major = major

6 def change_major(self , major):

7 self.major = major

8 def speak(self):

9 r = random.random ()

10 if r < 0.25:

11 print("i have homework")

12 elif 0.25 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person :{self.name}-{self.age}-{self.major}’

Person’s init creates
it’s own attributes as well
as Animal’s attributes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 15 / 56

1 import random

2 class Student(Person):

3 def __init__(self , name , age , major=None):

4 Person.__init__(self , name , age)

5 self.major = major

6 def change_major(self , major):

7 self.major = major

8 def speak(self):

9 r = random.random ()

10 if r < 0.25:

11 print("i have homework")

12 elif 0.25 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person :{self.name}-{self.age}-{self.major}’

Student class creates
additional attributes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 15 / 56

1 import random

2 class Student(Person):

3 def __init__(self , name , age , major=None):

4 Person.__init__(self , name , age)

5 self.major = major

6 def change_major(self , major):

7 self.major = major

8 def speak(self):

9 r = random.random ()

10 if r < 0.25:

11 print("i have homework")

12 elif 0.25 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person :{self.name}-{self.age}-{self.major}’

Student speaks differ-
ently than Person (behav-
ior override)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 15 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

parent class

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

shared class variable

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

instance variable

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

instance variable

read shared class
variable

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

Modifying class variable
changes it for all instances
that may reference it

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

Class Variables and the Rabbit Subclass

Class variables and their values are shared between all instances of a
class

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self ,age ,parent1=None ,parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

tag used to give unique id to each new rabbit instance

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 16 / 56

def __init__(self ,age ,parent1=None ,

parent2=None):

Animal.__init__(self , age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

Rabbit.tag 1

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 17 / 56

def __init__(self ,age ,parent1=None ,

parent2=None):

Animal.__init__(self , age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

r1 = Rabbit(8)

Age: 8
Parent1: None
Parent2: None
Rid: 1

r1

Rabbit.tag 2

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 17 / 56

def __init__(self ,age ,parent1=None ,

parent2=None):

Animal.__init__(self , age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

r1 = Rabbit(8)

r2 = Rabbit(6)

Age: 8
Parent1: None
Parent2: None
Rid: 1

Age: 6
Parent1: None
Parent2: None
Rid: 2

r1

r2

Rabbit.tag 3

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 17 / 56

def __init__(self ,age ,parent1=None ,

parent2=None):

Animal.__init__(self , age)

self.parent1 = parent1

self.parent2 = parent2

self.rid = Rabbit.tag

Rabbit.tag += 1

r1 = Rabbit(8)

r2 = Rabbit(6)

r3 = Rabbit(10)

Age: 8
Parent1: None
Parent2: None
Rid: 1

Age: 6
Parent1: None
Parent2: None
Rid: 2

Age: 10
Parent1: None
Parent2: None
Rid: 3

r1

r2

r3

Rabbit.tag 4

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 17 / 56

Rabbit Getter Methods

1 class Rabbit(Animal):

2 tag = 1

3 def __init__(self , age , parent1=None , parent2=None):

4 Animal.__init__(self , age)

5 self.parent1 = parent1

6 self.parent2 = parent2

7 self.rid = Rabbit.tag

8 Rabbit.tag += 1

9 # -----------------------------------#

10 def get_rid(self): #

11 return str(self.rid).zfill (5) # Getter Methods

12 def get_parent1(self): # specific to the

13 return self.parent1 # Rabbit class

14 def get_parent2(self): #

15 return self.parent2 #

16 # -----------------------------------#

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 18 / 56

Working with Your Own Types

1 def __add__(self , other):

2 # returning object of same type as this class

3 return Rabbit(0, self , other)

Define + operator between two Rabbit instances

▸ For example:
r4 = r1 + r2

r1 and r2 are Rabbit instances, combine to create r4

r4 is a new Rabbit instance with age 0

r4 has self as one parent and other as the other parent

In init , parent1 and parent2 are of type Rabbit

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 19 / 56

Working with Your Own Types

1 def __add__(self , other):

2 # returning object of same type as this class

3 return Rabbit(0, self , other)

Define + operator between two Rabbit instances

▸ For example:
r4 = r1 + r2

r1 and r2 are Rabbit instances, combine to create r4

r4 is a new Rabbit instance with age 0

r4 has self as one parent and other as the other parent

In init , parent1 and parent2 are of type Rabbit

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 19 / 56

Working with Your Own Types

1 def __add__(self , other):

2 # returning object of same type as this class

3 return Rabbit(0, self , other)

Define + operator between two Rabbit instances

▸ For example:
r4 = r1 + r2

r1 and r2 are Rabbit instances, combine to create r4

r4 is a new Rabbit instance with age 0

r4 has self as one parent and other as the other parent

In init , parent1 and parent2 are of type Rabbit

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 19 / 56

Working with Your Own Types

1 def __add__(self , other):

2 # returning object of same type as this class

3 return Rabbit(0, self , other)

Define + operator between two Rabbit instances

▸ For example:
r4 = r1 + r2

r1 and r2 are Rabbit instances, combine to create r4

r4 is a new Rabbit instance with age 0

r4 has self as one parent and other as the other parent

In init , parent1 and parent2 are of type Rabbit

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 19 / 56

Special Method to Compare Two Rabbits

Decide that two rabbits are equal if they have the same two parents

1 def __eq__(self , other):

2 parents_same = (self.p1.rid == other.p1.rid and

3 self.p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.p1.rid and

5 self.p1.rid == other.p2.rid)

6 return parents_same or parents_opp

Compare ids of parents since ids are unique (due to class var)

Note: you CAN’T compare objects directly (recursive if eq)
Also, can’t call on None (AttributeError when None.parent1)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 20 / 56

Special Method to Compare Two Rabbits

Decide that two rabbits are equal if they have the same two parents

1 def __eq__(self , other):

2 parents_same = (self.p1.rid == other.p1.rid and

3 self.p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.p1.rid and

5 self.p1.rid == other.p2.rid)

6 return parents_same or parents_opp

Booleans checking
r1 + r2 or
r2 + r1

Compare ids of parents since ids are unique (due to class var)

Note: you CAN’T compare objects directly (recursive if eq)
Also, can’t call on None (AttributeError when None.parent1)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 20 / 56

Special Method to Compare Two Rabbits

Decide that two rabbits are equal if they have the same two parents

1 def __eq__(self , other):

2 parents_same = (self.p1.rid == other.p1.rid and

3 self.p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.p1.rid and

5 self.p1.rid == other.p2.rid)

6 return parents_same or parents_opp

Compare ids of parents since ids are unique (due to class var)

Note: you CAN’T compare objects directly (recursive if eq)
Also, can’t call on None (AttributeError when None.parent1)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 20 / 56

Special Method to Compare Two Rabbits

Decide that two rabbits are equal if they have the same two parents

1 def __eq__(self , other):

2 parents_same = (self.p1.rid == other.p1.rid and

3 self.p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.p1.rid and

5 self.p1.rid == other.p2.rid)

6 return parents_same or parents_opp

Compare ids of parents since ids are unique (due to class var)

Note: you CAN’T compare objects directly (recursive if eq)
Also, can’t call on None (AttributeError when None.parent1)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 20 / 56

Big Idea

Class Variables are shared between all
instances

If one instance changes it, it’s changed for every instance.

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 21 / 56

Polymorphism

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 22 / 56

Quick Recap: Class Hierarchy

1 class Animal(object):

2 def __init__(self , age):

3 self.age = age

4 def speak(self):

5 print("some sound")

6

7 class Cat(Animal):

8 def meo(self):

9 print("meow")

10

11 class Dog(Animal):

12 def bark(self):

13 print("woof")

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 23 / 56

A Common Programming Problem

Suppose we want to make all our animals speak:

1 animals = [Cat (2), Dog (3), Rabbit (1), Cat (5)]

2

3 # Without polymorphism , we’d need:

4 for animal in animals:

5 if isinstance(animal , Cat):

6 animal.meo()

7 elif isinstance(animal , Dog):

8 animal.bark()

9 elif isinstance(animal , Rabbit):

10 animal.squeak ()

11 # Need to add elif for EVERY new animal type!

This is tedious and doesn’t scale!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 24 / 56

A Common Programming Problem

Suppose we want to make all our animals speak:

1 animals = [Cat (2), Dog (3), Rabbit (1), Cat (5)]

2

3 # Without polymorphism , we’d need:

4 for animal in animals:

5 if isinstance(animal , Cat):

6 animal.meo()

7 elif isinstance(animal , Dog):

8 animal.bark()

9 elif isinstance(animal , Rabbit):

10 animal.squeak ()

11 # Need to add elif for EVERY new animal type!

Must check type of each
animal manually - tedious!

This is tedious and doesn’t scale!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 24 / 56

A Common Programming Problem

Suppose we want to make all our animals speak:

1 animals = [Cat (2), Dog (3), Rabbit (1), Cat (5)]

2

3 # Without polymorphism , we’d need:

4 for animal in animals:

5 if isinstance(animal , Cat):

6 animal.meo()

7 elif isinstance(animal , Dog):

8 animal.bark()

9 elif isinstance(animal , Rabbit):

10 animal.squeak ()

11 # Need to add elif for EVERY new animal type!

Must check type of each
animal manually - tedious!

This is tedious and doesn’t scale!
Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 24 / 56

The Solution

Polymorphism
”Many forms”

The ability to use objects of different types through a uniform interface

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 25 / 56

Polymorphism

Greek: ”poly” = many, ”morph” = form

The ability to treat objects of different types in a similar way

Same method name, different implementations

Python automatically calls the correct version of the method based
on the object’s type

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 26 / 56

Polymorphism

Greek: ”poly” = many, ”morph” = form

The ability to treat objects of different types in a similar way

Same method name, different implementations

Python automatically calls the correct version of the method based
on the object’s type

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 26 / 56

Polymorphism

Greek: ”poly” = many, ”morph” = form

The ability to treat objects of different types in a similar way

Same method name, different implementations

Python automatically calls the correct version of the method based
on the object’s type

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 26 / 56

Polymorphism

Greek: ”poly” = many, ”morph” = form

The ability to treat objects of different types in a similar way

Same method name, different implementations

Python automatically calls the correct version of the method based
on the object’s type

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 26 / 56

Polymorphism in Action

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def speak(self):

7 print("meow")

8

9 class Dog(Animal):

10 def speak(self):

11 print("woof")

12

13 animals = [Cat (2), Dog (3), Cat (1)]

14 for animal in animals:

15 # Each calls their own version!

16 animal.speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 27 / 56

Polymorphism in Action

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def speak(self):

7 print("meow")

8

9 class Dog(Animal):

10 def speak(self):

11 print("woof")

12

13 animals = [Cat (2), Dog (3), Cat (1)]

14 for animal in animals:

15 # Each calls their own version!

16 animal.speak()

Same method name in
all subclasses

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 27 / 56

Polymorphism in Action

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def speak(self):

7 print("meow")

8

9 class Dog(Animal):

10 def speak(self):

11 print("woof")

12

13 animals = [Cat (2), Dog (3), Cat (1)]

14 for animal in animals:

15 # Each calls their own version!

16 animal.speak()

Python automatically
calls the correct speak()

method!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 27 / 56

Output

meow

woof

meow

Python automatically determines which speak() to call

Based on the actual type of the object

We don’t need to check types manually!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 28 / 56

Output

meow

woof

meow

Python automatically determines which speak() to call

Based on the actual type of the object

We don’t need to check types manually!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 28 / 56

Benefits of Polymorphism
1 Flexibility

▸ Write code that works with parent class but accepts any subclass

2 Extensibility
▸ Add new subclasses without changing existing code

3 Code Reusability
▸ One function works with many types

4 Cleaner Code
▸ No need for long if-elif chains

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 29 / 56

Benefits of Polymorphism
1 Flexibility

▸ Write code that works with parent class but accepts any subclass

2 Extensibility
▸ Add new subclasses without changing existing code

3 Code Reusability
▸ One function works with many types

4 Cleaner Code
▸ No need for long if-elif chains

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 29 / 56

Benefits of Polymorphism
1 Flexibility

▸ Write code that works with parent class but accepts any subclass

2 Extensibility
▸ Add new subclasses without changing existing code

3 Code Reusability
▸ One function works with many types

4 Cleaner Code
▸ No need for long if-elif chains

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 29 / 56

Benefits of Polymorphism
1 Flexibility

▸ Write code that works with parent class but accepts any subclass

2 Extensibility
▸ Add new subclasses without changing existing code

3 Code Reusability
▸ One function works with many types

4 Cleaner Code
▸ No need for long if-elif chains

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 29 / 56

Example 1: Animal Shelter

1 def make_sound(animal):

2 """ Works with ANY Animal subclass """

3 animal.speak()

4

5 cat = Cat(2)

6 dog = Dog(3)

7 rabbit = Rabbit (1)

8

9 make_sound(cat) # meow

10 make_sound(dog) # woof

11 make_sound(rabbit) # squeak

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 30 / 56

Example 1: Animal Shelter

1 def make_sound(animal):

2 """ Works with ANY Animal subclass """

3 animal.speak()

4

5 cat = Cat(2)

6 dog = Dog(3)

7 rabbit = Rabbit (1)

8

9 make_sound(cat) # meow

10 make_sound(dog) # woof

11 make_sound(rabbit) # squeak

Function accepts Animal
but works with any sub-
class

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 30 / 56

Example 1: Animal Shelter

1 def make_sound(animal):

2 """ Works with ANY Animal subclass """

3 animal.speak()

4

5 cat = Cat(2)

6 dog = Dog(3)

7 rabbit = Rabbit (1)

8

9 make_sound(cat) # meow

10 make_sound(dog) # woof

11 make_sound(rabbit) # squeak

Same function, differ-
ent behaviors!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 30 / 56

Example 2: Processing Collections

1 def morning_routine(animals):

2 """ Make all animals speak in the morning """

3 for animal in animals:

4 animal.speak()

5

6 # Mix of different animal types

7 zoo = [Cat(2), Dog(3), Rabbit (1),

8 Cat (1), Dog (5)]

9

10 morning_routine(zoo)

11 # Output: meow , woof , squeak , meow , woof

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 31 / 56

Example 3: More Complex Behavior

1 class Animal:

2 def __init__(self , age , name):

3 self.age = age

4 self.name = name

5 def introduce(self):

6 print(f"I’m {self.name}, I’m {self.age} years old")

7 self.speak()

8

9 class Cat(Animal):

10 def speak(self):

11 print("meow")

12

13 class Dog(Animal):

14 def speak(self):

15 print("woof")

16

17 c = Cat(2, "Fluffy")

18 c.introduce () # I’m Fluffy , I’m 2 years old

19 # meow

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 32 / 56

Example 3: More Complex Behavior

1 class Animal:

2 def __init__(self , age , name):

3 self.age = age

4 self.name = name

5 def introduce(self):

6 print(f"I’m {self.name}, I’m {self.age} years old")

7 self.speak()

8

9 class Cat(Animal):

10 def speak(self):

11 print("meow")

12

13 class Dog(Animal):

14 def speak(self):

15 print("woof")

16

17 c = Cat(2, "Fluffy")

18 c.introduce () # I’m Fluffy , I’m 2 years old

19 # meow

Parent method calls poly-
morphic method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 32 / 56

You Try! Exercise 1

Create a Shape hierarchy with polymorphic area() method:

1 class Shape:

2 def area(self):

3 pass # To be overridden

4

5 class Rectangle(Shape):

6 def __init__(self , width , height):

7 # Your code here

8 def area(self):

9 # Your code here

10

11 class Circle(Shape):

12 def __init__(self , radius):

13 # Your code here

14 def area(self):

15 # Your code here (use 3.14 for pi)

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 33 / 56

You Try! Exercise 1 (continued)

Write a function that uses polymorphism:

1 def total_area(shapes):

2 """

3 Input: shapes is a list of Shape objects

4 Returns: total area of all shapes

5 """

6 # Your code here

7 pass

8

9 # Test your code:

10 shapes = [Rectangle (4, 5),

11 Circle (3),

12 Rectangle(2, 3)]

13 print(total_area(shapes)) # Should print: 54.26

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 34 / 56

You Try! Exercise 2

Create an Employee hierarchy:

1 class Employee:

2 def __init__(self , name , base_salary):

3 self.name = name

4 self.base_salary = base_salary

5 def calculate_pay(self):

6 return self.base_salary

7

8 class Manager(Employee):

9 def __init__(self , name , base_salary , bonus):

10 # Your code: call parent __init__ and store bonus

11 def calculate_pay(self):

12 # Your code: return base_salary + bonus

13

14 class Salesperson(Employee):

15 def __init__(self , name , base_salary , commission):

16 # Your code: call parent __init__ and store commission

17 def calculate_pay(self):

18 # Your code: return base_salary + commission

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 35 / 56

You Try! Exercise 2 (continued)

1 def print_payroll(employees):

2 """

3 Input: employees is a list of Employee objects

4 Prints: name and pay for each employee

5 Returns: total payroll

6 """

7 # Your code here

8 pass

9

10 # Test:

11 employees = [Employee("Alice", 50000) , Manager("Bob", 60000, 10000) ,

12 Salesperson("Charlie", 40000, 15000)]

13

14 total = print_payroll(employees)

15 # Should print:

16 # Alice: \$50000
17 # Bob: \$70000
18 # Charlie: \$55000
19 # Total: \$175000

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 36 / 56

Abstract Base Classes

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 37 / 56

The Problem with Our Animal Class

What if someone creates an Animal directly?

a = Animal(5, "Generic")

What sound does a generic ”animal” make?

We want Animal to be a template only

Force subclasses to implement speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 38 / 56

The Problem with Our Animal Class

What if someone creates an Animal directly?

a = Animal(5, "Generic")

What sound does a generic ”animal” make?

We want Animal to be a template only

Force subclasses to implement speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 38 / 56

The Problem with Our Animal Class

What if someone creates an Animal directly?

a = Animal(5, "Generic")

What sound does a generic ”animal” make?

We want Animal to be a template only

Force subclasses to implement speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 38 / 56

The Problem with Our Animal Class

What if someone creates an Animal directly?

a = Animal(5, "Generic")

What sound does a generic ”animal” make?

We want Animal to be a template only

Force subclasses to implement speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 38 / 56

The Problem with Our Animal Class

What if someone creates an Animal directly?

a = Animal(5, "Generic")

What sound does a generic ”animal” make?

We want Animal to be a template only

Force subclasses to implement speak()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 38 / 56

Solution

Abstract Base Class (ABC)
A class that:

Cannot be instantiated directly

Forces subclasses to implement certain methods

Defines a contract for subclasses

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 39 / 56

Creating an Abstract Base Class

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 def __init__(self , age , name):

5 self.age = age

6 self.name = name

7

8 @abstractmethod

9 def speak(self):

10 pass

11

12 def introduce(self):

13 print(f"I’m {self.name}, I’m {self.age} years old")

14 self.speak ()

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 40 / 56

Creating an Abstract Base Class

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 def __init__(self , age , name):

5 self.age = age

6 self.name = name

7

8 @abstractmethod

9 def speak(self):

10 pass

11

12 def introduce(self):

13 print(f"I’m {self.name}, I’m {self.age} years old")

14 self.speak ()

Import ABC tools
from Python

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 40 / 56

Creating an Abstract Base Class

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 def __init__(self , age , name):

5 self.age = age

6 self.name = name

7

8 @abstractmethod

9 def speak(self):

10 pass

11

12 def introduce(self):

13 print(f"I’m {self.name}, I’m {self.age} years old")

14 self.speak ()

Inherit from ABC

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 40 / 56

Creating an Abstract Base Class

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 def __init__(self , age , name):

5 self.age = age

6 self.name = name

7

8 @abstractmethod

9 def speak(self):

10 pass

11

12 def introduce(self):

13 print(f"I’m {self.name}, I’m {self.age} years old")

14 self.speak ()

Mark method as abstract
- subclasses must imple-
ment it

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 40 / 56

Cannot Instantiate Abstract Classes

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 @abstractmethod

5 def speak(self):

6 pass

7

8 # This will cause an ERROR:

9 a = Animal(5, "Generic")

10

11 # TypeError: Can’t instantiate abstract

12 # class Animal with abstract method speak

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 41 / 56

Cannot Instantiate Abstract Classes

1 from abc import ABC , abstractmethod

2

3 class Animal(ABC):

4 @abstractmethod

5 def speak(self):

6 pass

7

8 # This will cause an ERROR:

9 a = Animal(5, "Generic")

10

11 # TypeError: Can’t instantiate abstract

12 # class Animal with abstract method speak

Python prevents creat-
ing Animal objects!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 41 / 56

Subclasses Must Implement Abstract Methods

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4

5 class Dog(Animal):

6 def speak(self):

7 print("woof")

8

9 # Now these work fine:

10 c = Cat(2, "Fluffy")

11 d = Dog(3, "Buddy")

12 c.speak () # meow

13 d.speak () # woof

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 42 / 56

Subclasses Must Implement Abstract Methods

1 class Cat(Animal):

2 def speak(self):

3 print("meow")

4

5 class Dog(Animal):

6 def speak(self):

7 print("woof")

8

9 # Now these work fine:

10 c = Cat(2, "Fluffy")

11 d = Dog(3, "Buddy")

12 c.speak () # meow

13 d.speak () # woof

Subclass implements
the abstract method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 42 / 56

Forgetting to Implement Causes Error

1 class Rabbit(Animal):

2 def hop(self):

3 print("hopping")

4 # Forgot to implement speak()!

5

6 # This will cause an ERROR:

7 r = Rabbit(1, "Fluffy")

8

9 # TypeError: Can’t instantiate abstract

10 # class Rabbit with abstract method speak

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 43 / 56

Forgetting to Implement Causes Error

1 class Rabbit(Animal):

2 def hop(self):

3 print("hopping")

4 # Forgot to implement speak()!

5

6 # This will cause an ERROR:

7 r = Rabbit(1, "Fluffy")

8

9 # TypeError: Can’t instantiate abstract

10 # class Rabbit with abstract method speak

Missing required
speak() method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 43 / 56

Forgetting to Implement Causes Error

1 class Rabbit(Animal):

2 def hop(self):

3 print("hopping")

4 # Forgot to implement speak()!

5

6 # This will cause an ERROR:

7 r = Rabbit(1, "Fluffy")

8

9 # TypeError: Can’t instantiate abstract

10 # class Rabbit with abstract method speak

Python catches the er-
ror immediately!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 43 / 56

Why Use Abstract Classes?

1 Enforce consistency - all subclasses have required methods

2 Catch errors early - at instantiation, not when method is called

3 Document intent - clearly shows which methods subclasses need

4 Prevent misuse - can’t create incomplete objects

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 44 / 56

Common Pitfalls

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 45 / 56

Pitfall 1: Forgetting to Override

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def meow(self): # Wrong method name!

7 print("meow")

8

9 c = Cat(2)

10 c.speak() # Prints "some sound" (not "meow")

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 46 / 56

Pitfall 1: Forgetting to Override

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def meow(self): # Wrong method name!

7 print("meow")

8

9 c = Cat(2)

10 c.speak() # Prints "some sound" (not "meow")

Must use same name
as parent method!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 46 / 56

Pitfall 2: Wrong Method Signature

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def speak(self , volume): # Extra parameter!

7 print(f"meow at volume {volume}")

8

9 def make_sound(animal):

10 animal.speak() # Error! Missing argument

11

12 c = Cat(2)

13 make_sound(c) # TypeError!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 47 / 56

Pitfall 2: Wrong Method Signature

1 class Animal:

2 def speak(self):

3 print("some sound")

4

5 class Cat(Animal):

6 def speak(self , volume): # Extra parameter!

7 print(f"meow at volume {volume}")

8

9 def make_sound(animal):

10 animal.speak() # Error! Missing argument

11

12 c = Cat(2)

13 make_sound(c) # TypeError!

Signatures must
match!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 47 / 56

Key Principles

1 Use the same method name in parent and child

2 Keep the same parameters (method signature)

3 Write functions that accept parent type but work with any subclass

4 Python handles the rest automatically!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 48 / 56

Duck Typing in Python

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 49 / 56

Duck Typing

Python’s approach to polymorphism is ”duck typing”

”If it walks like a duck and quacks like a duck, then it must be a
duck”

Python doesn’t care about the type of an object

Python only cares if the object has the right methods

Objects don’t even need to inherit from the same parent!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 50 / 56

Duck Typing

Python’s approach to polymorphism is ”duck typing”

”If it walks like a duck and quacks like a duck, then it must be a
duck”

Python doesn’t care about the type of an object

Python only cares if the object has the right methods

Objects don’t even need to inherit from the same parent!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 50 / 56

Duck Typing

Python’s approach to polymorphism is ”duck typing”

”If it walks like a duck and quacks like a duck, then it must be a
duck”

Python doesn’t care about the type of an object

Python only cares if the object has the right methods

Objects don’t even need to inherit from the same parent!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 50 / 56

Duck Typing

Python’s approach to polymorphism is ”duck typing”

”If it walks like a duck and quacks like a duck, then it must be a
duck”

Python doesn’t care about the type of an object

Python only cares if the object has the right methods

Objects don’t even need to inherit from the same parent!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 50 / 56

Duck Typing

Python’s approach to polymorphism is ”duck typing”

”If it walks like a duck and quacks like a duck, then it must be a
duck”

Python doesn’t care about the type of an object

Python only cares if the object has the right methods

Objects don’t even need to inherit from the same parent!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 50 / 56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print("woof")

4

5 class Robot: # Not related to Animal!

6 def speak(self):

7 print("beep boop")

8

9 class Person:

10 def speak(self):

11 print("hello")

12

13 def make_speak(thing):

14 thing.speak () # Works with anything that has speak ()

15

16 make_speak(Dog()) # woof

17 make_speak(Robot ()) # beep boop

18 make_speak(Person ()) # hello

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 51 / 56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print("woof")

4

5 class Robot: # Not related to Animal!

6 def speak(self):

7 print("beep boop")

8

9 class Person:

10 def speak(self):

11 print("hello")

12

13 def make_speak(thing):

14 thing.speak () # Works with anything that has speak ()

15

16 make_speak(Dog()) # woof

17 make_speak(Robot ()) # beep boop

18 make_speak(Person ()) # hello

No inheritance relation-
ship needed!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 51 / 56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print("woof")

4

5 class Robot: # Not related to Animal!

6 def speak(self):

7 print("beep boop")

8

9 class Person:

10 def speak(self):

11 print("hello")

12

13 def make_speak(thing):

14 thing.speak () # Works with anything that has speak ()

15

16 make_speak(Dog()) # woof

17 make_speak(Robot ()) # beep boop

18 make_speak(Person ()) # hello

Works with any object with a
speak() method

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 51 / 56

Summary

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 52 / 56

Summary: Key Takeaways

1 Polymorphism = “many forms”

2 Write code that works with parent class, automatically works with
all subclasses

3 Same method name, different implementations

4 Python uses duck typing - only cares about methods, not types

5 Makes code more flexible, extensible, and reusable

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 53 / 56

Remember

Polymorphism allows you to write
functions that work with many different
types of objects through a common

interface
This is one of the most powerful features of OOP!

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 54 / 56

Why OOP over Procedural?

Modularity – Code organized into self-contained objects

Reusability – Inheritance allows code reuse

Maintainability – Changes isolated to specific classes

Flexibility – Polymorphism enables extensible design

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 55 / 56

Questions?

Comp 201 Programming 2: OOP Revision (Lecture 2) Inheritance & PolymorphismForman Christian University 56 / 56

	Quick Recap
	Inheritance
	Polymorphism
	Abstract Base Classes
	Common Pitfalls
	Duck Typing in Python
	Summary

