Programming 2: OOP Revision (Lecture 2)
Inheritance & Polymorphism

Comp 201

Forman Christian University

Today’s Agenda

@ Quick Recap: Classes & Objects
@ Inheritance

@ Polymorphism

© Abstract Base Classes

@ Summary: OOP Advantages

Comp 201 Forman Christian University 2/56

Quick Recap

o = = E T 9Dacn

Comp 201

Comp 201

Abstraction

v/

is_within_circle

1}
distance

make_point

Comp 201

Abstraction

is_within_circle

v/

1}
distance

make_point

a

Encapsulation

is_within_circle

v/

1}
distance

f

\

did

* Y

make_point

get_y

Inheritance

o = = E T 9Dacn

Comp 201

= Parent class
(superclass)

= Child class
(subclass)

* Inherits all data and
behaviors of parent
class

* Add more info
* Add more behavior
e Override behavior

Animal
/S
Person Cat Rabbit

AN
Student

Comp 201

Forman Christian University

6/56

Inheritance: Parent Class

class Animal (object):

1

13

14

def

def

def

def

def

def

__init__(self, age):
self .age = age

self .name = None
get_age (self):

return self.age
get_name (self):

return self.name
set_age (self, newage):

self.age = newage
set_name (self, newname=""):
self .name = newname

__str__(self):
return f’animal:{self.name}-{self.agel}’

Comp 201 Forman Christian University

7/56

Inheritance: Parent Class

10

11

12

13

14

Comp 201

class Animal (object) :

self .age = age
self .name = None
def get_age(self):
return self.age
def get_name (self):
return self.name

def __init__(self, age)\,[

def set_age(self, newage):

object is the parent class of
all classes in Python

self.age = newage
def set_name(self, newname=""):
self .name = newname

def __str__(self):

return f’animal:{self.name}-{self.agel}’

Forman Christian University

7/56

Subclass Cat

., class Cat(Animal):

2 def speak(self):

3 print ("meow"

s def __str__(self):

5 return f’cat:{self.name}t-{self.agel}’

7 C = Cat(Z)
s c.set_name(’simba’)
s print (c)

Comp 201 Forman Christian University 8/56

Subclass Cat 7 inherts il ateibutes

. class Cat ('Animal') . : and methods from the.
' Animal class '
2 def speak(self): ool ’
3 print ("meow"
s def __str__(self):
5 return f’cat:{self.name}t-{self.agel}’

7 C = Cat(2)
s c.set_name(’simba’)
s print (c)

Comp 201 Forman Christian University 8/56

Subclass Cat

. class Cat(Animal): ////1 -
) ' Add new functionality.
i def speak(self): . Not present in the par-

3 print ("meow" ' ent class
s def __str__(self): T '
5 return f’cat:{self.name}t-{self.agel}’

7 C = Cat(2)
s c.set_name(’simba’)
s print (c)

Comp 201 Forman Christian University 8/56

Subclass Cat

., class Cat(Animal):

. def speak(selt): [Ouwrmde sin rebine]
) print ("meow" E parent’s method :
. @ef __str__(self)ﬂ

5 return f’cat:{self.name}t-{self.agel}’

7 C = Cat(2)
s c.set_name(’simba’)
s print (c)

Comp 201 Forman Christian University 8/56

Subclass Cat

., class Cat(Animal):

2 def speak(self):

3 print ("meow"

s def __str__(self):

5 return f’cat:{self.name}t-{self.agel}’

N I e — \

. ' __init__is not missin , uses }
s c.set_name(’simba’) : . . &
' the Animal version '

s print (c) mmmmmemmmsssmmesssoosooos

Comp 201 Forman Christian University 8/56

Big ldea

Override a method: Create a new
method in the child class but with same
name as in the parent class.

Comp 201 Forman Christian University 9/56

Can’t use child class Methods

Animal (1)

Cat (2) # Child CAN use parent’s methods:
(__init__)

. c.speak () # meow
#
#

-

O
I

s a.speak () ERROR: parent can NOT use
child’s methods or attributes

Comp 201 Forman Christian University 10 /56

Which Method to Use?

e Subclass can have methods with same name as superclass
(method override)

Comp 201 Forman Christian University 11/56

Which Method to Use?

e Subclass can have methods with same name as superclass
(method override)

e For an instance of a class, look for a method name in current class
definition

o If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

Comp 201 Forman Christian University 11/56

Which Method to Use?

e Subclass can have methods with same name as superclass
(method override)

e For an instance of a class, look for a method name in current class
definition

o If not found, look for method name up the hierarchy (in parent,
then grandparent, and so on)

o Use first method up the hierarchy that you found with that method
name

Comp 201 Forman Christian University 11/56

Subclass Person

class Person(Animal):

1

© o N o

def

def

def

def

def

def

__init__(self, name, age):
Animal.__init__(self, age)
self.set_name (name)
self.friends = []
get_friends (self):
return self.friends.copy()
add_friend(self, fname):
if fname not in self.friends:

self .friends.append(fname)
speak (self):
print ("hello")
age_diff (self, other):
diff = self.age - other.age
print (abs(diff), "year difference")
__str__(self):
return f’person:{self.name}-{self.age}’

Comp 201 Forman Christian University

12/56

Subclass Person

1

© o N o

class Person (Animal) :

def

def

def

def

def

def

--init__(self, name, age): ' Parent is the Animal
Animal.__init__(self, age) . !

1 class '
self.set_name (name) N e e mmmmmmmmmm—————— !

self.friends = []
get_friends (self):
return self.friends.copy()
add_friend(self, fname):
if fname not in self.friends:
self .friends.append(fname)
speak (self):
print ("hello")
age_diff (self, other):
diff = self.age - other.age
print (abs(diff), "year difference")
__str__(self):
return f’person:{self.name}-{self.age}’

Comp 201 Forman Christian University

12/56

Subclass Person

1

© o N o

10
11
12
13
14
15
16
17

class Person(Animal): I///’ﬁ """"

(def

__init__(self, name, age):)

def

def

def

def

def

Animal.__init__(self, age)

self.set_name (name)

self.friends = []

get_friends (self):

return self.friends.copy()

add_friend(self, fname):

if fname not in self.friends:
self .friends.append(fname)

speak (self):

print ("hello")

age_diff (self, other):

diff = self.age - other.age

print (abs(diff), "year difference")

__str__(self):

return f’person:{self.name}-{self.age}’

method

Comp 201

Note: Person class
overrides __init__

Forman Christian University

12/56

Subclass Person

class Person(Animal):

w N

© o N o o A

10
11
12
13
14
15
16
17

def

def

def

def

def

def

__init__(self, name, age):

(Animal.__init__(self, age)) '
self.set_name (name) '
self.friends = [] '

get_friends (self):
return self.friends.copy()

if fname not in self.friends:
self .friends.append(fname)
speak (self):
print ("hello")
age_diff (self, other):
diff = self.age - other.age
print (abs(diff), "year difference")
__str__(self):
return f’person:{self.name}-{self.age}’

Comp 201

........

Due to overriding,
Animal's
method will not be

called automatically
add_friend(self, fname): = ~“"--"-=--<

__init__

Forman Christian University

12/56

Subclass Person

class Person(Animal):

1

© o N o

10
11
12
13
14
15
16
17

def

def

def

def

def

def

__init__(self, name, age):
Animal.__init__(self, age)

self.set_name (name) ! .
self.friends = [] ! Person class has addi-

get_friends (self) : : tiOI’Ia| attributes
return self.friends.copy() T TTTTTTTT
add_friend(self, fname):
if fname not in self.friends:
self .friends.append(fname)
speak (self):
print ("hello")
age_diff (self, other):
diff = self.age - other.age
print (abs(diff), "year difference")
__str__(self):
return f’person:{self.name}-{self.age}’

Comp 201 Forman Christian University

12/56

Subclass Person

1 class Person(Animal):

2 def

__init__(self, name,
Animal.__init__(self,
self.set_name (name)
self.friends = []

age):
age)

Person class has
additional methods

..................

get_friends (self):

return self.friends.copy()

add_friend(self, fname):

if fname not in self.friends:
self .friends.append(fname)

speak (self):

print ("hello")

age_diff (self,

diff = self.age

print (abs (diff),

other):
- other.age

"year difference")

6 def
7
8 def
9
10
11 def
12
13 def
14
15
16 def

17

Comp 201

__str__(self):

return f’person:{self.name}-{self.age}’

Forman Christian University

12/56

Subclass Person

1 class Person(Animal):

2 def __init__(self, name, age):

3 Animal.__init__(self, age)

4 self.set_name (name)

5 self.friends = []

6 def get_friends(self):

7 return self.friends.copy()

8 def add_friend(self, fname):

9 if fname not in self.friends:

10 self .friends.append(fname)

11 def speak(self): g T T mmmemsmm----- -,
1 print ("hello") . Person class overrides '
13 def age_diff (self, other): i __str__ method :
14 diff = self.age - other.age R
15 print (abs(diff), "year difference")

16 def __str__(self):

17 return f’person:{self.name}-{self.age}’

Comp 201 Forman Christian University 12 /56

You Try!

Write a function according to the following specification:
1 def make_pets(d):

2 ’?? TInput: d is a dict mapping a Person obj to a Cat obj

3 Prints: on each line, the name of a person, a colon, and the
4 name of that person’s cat

5 Output: Nomne ’7~°

6 pass

s pl = Person("zaid", 54)

9 p2 Person("ahmed", 38)

0 cl Cat (1)

11 cl.set_name("simba")

1 c2 = Cat (1)

13 c2.set_name("tom")

1 d = {pl:cl, p2:c2}

15 make_pets(d) # prints zaid:simba
16 # ahmed:tom

Comp 201 Forman Christian University 13 /56

Big ldea

A subclass can use a parent's attributes,
override a parent’s attributes, or define
new attributes.

Attributes are either data or methods.

Comp 201 Forman Christian University 14 /56

2

~ o o »

8

9
10
11
12
13
14
15
16
17
18
19

import random
class Student (Person):

def

def

def

def

__init__(self, name, age, major=None):
Person.__init__(self, name, age)
self .major = major
change_major (self, major):
self .major = major
speak (self):
r = random.random ()
if r < 0.25:
print ("i have homework")
elif 0.25 <= r < 0.5:
print("i need sleep")
elif 0.5 <= r < 0.75:
print ("i should eat")
else:
print("i’m still zooming")
__str__(self):
return f’person:{self.name}-{self.age}-{self.major}’

Comp 201 Forman Christian University

15 /56

2

~ o o »

8

9
10
11
12
13
14
15
16
17
18
19

import random

class Student

def

def

def

def

__init__(self, age, major=None) :
Person.__init__(sel name, age)

self .major = major

change_major (self, major):

self .major = major 0 Fr-------------o-o--o--
speak (self): 'Student inherits both ! i
r = random.random () Person and Anlmal :
if r < 0.25: 'attrlbutes '

print ("i have homework")
elif 0.256 <= r < 0.5:

print("i need sleep")
elif 0.5 <= r < 0.75:

print ("i should eat")
else:

print("i’m still zooming")
__str__(self):
return f’person:{self.name}-{self.age}-{self.major}’

Comp 201 Forman Christian University

15 /56

1 import random
> class Student(Person):

3 def __init__(self, name, age, major=None):

4 (Person.__init__(self, name, age))

5 self .major = major

6 def change_major (self, major):

7 self .major = major

8 def speak(self): R -
9 r = random.random () :Person's,,init,,cmmtes:
10 if r < 0.25: 'it's own attributes as WeIIE
. elifpngz(:i :a:eol.l;?ework") a5 Animal’s attributes |
13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print ("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person:{self.name}-{self.age}-{self.major}’

Comp 201 Forman Christian University 15 /56

1 import random
> class Student(Person):

3 def __init__(self, name, age, major=None):

4 Person.__init__(self, name, age)

5 (self .major = major)J—— ...
6 def change_major (self, major): i Student class Cl’eateSI
7 self.major = major » additional attributes
8 def speak(self): T TTTommmmmmmmmmEmOS
9 r = random.random ()

10 if r < 0.25:

11 print ("i have homework")

12 elif 0.256 <= r < 0.5:

13 print("i need sleep")

14 elif 0.5 <= r < 0.75:

15 print ("i should eat")

16 else:

17 print("i’m still zooming")

18 def __str__(self):

19 return f’person:{self.name}-{self.age}-{self.major}’

Comp 201 Forman Christian University 15 /56

11
12
13
14
15
16
17
18
19

import random
class Student (Person):

def

def

self .major = major
change_major (self, major):
self .major = major

def

speak (self):
r = random.random ()
if r < 0.25:

print ("i have homework")
elif 0.256 <= r < 0.5:

print("i need sleep")
elif 0.5 <= r < 0.75:

print ("i should eat")
else:

print("i’m still zooming")

def

str__(self):

init__(self, name, age, major=None):
Person.__init__(self, name, age)

EStudent speaks difFer—\:
rently than Person (behav-

return f’person:{self.name}-{self.age}-{self.major}’

Comp 201 Forman Christian University

15 /56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class
class Rabbit (Animal):
tag = 1
def __init__(self ,fage,parentl=None,parent2=None):
Animal.__init__(self, age)

self .parentl = parentl
self .parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

®w N o U A W N =

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class S .
_ : f: parent class ,
class Rabbit (Animal) : Ve mmmm———— v
tag = 1
def __init__(self ,fage,parentl=None,parent2=None):
Animal.__init__(self, age)

self .parentl = parentl
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

®w N o U A W N =

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class .

 shared class variable !

class Rabbit (Animal) : T ’

def __init__(self ,bage,parentl=None,parent2=None):
Animal.__init__(self, age)

self .parentl = parentl
self.parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

®w N o U A W N =

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class
1 class Rabbit (Animal):
2 tag = 1
3 def __init__(self ,fage,parentl=None,parent2=None):
4 Animal.__init__(self, age) o ____. .
5 self.parentl = parentl » instance variable '
6 self.paren parent?2 tmmmmmmmmmmmmmmmmmmme
7 = Rabbit.tag
8 Rabbit.tag += 1

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class
1 class Rabbit (Animal):
2 tag = 1
3 def __init__(self ,fage,parentl=None,parent2=None):
4 Animal.__init__(self, age) o ____. .
5 self.parentl = parentl » instance variable '
6 self.paren Tent?2 tmmmmmmmmmmmmmmmmmmme
7 (self.rid) = (Rabbit.tag . .
8 Rabbit.tag += 1 \: read shared class !

i variable .

................

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class
1 class Rabbit (Animal):
2 tag = 1
3 def __init__(self ,fage,parentl=None,parent2=None):
4 Animal.__init__(self, age) . _ o o __ _
5 self.parentl = parentl Modifying class variable
6
7
8

self.parent2 = parent2 « changes it for all instances
self.rid = Rabbit.tag , .

; i that may reference it
(Rabbit.tag += 1 e Ay e !

Comp 201 Forman Christian University 16 / 56

Class Variables and the Rabbit Subclass

e Class variables and their values are shared between all instances of a

class
class Rabbit (Animal):
tag = 1
def __init__(self ,fage,parentl=None,parent2=None):
Animal.__init__(self, age)

self .parentl = parentl
self .parent2 = parent2
self.rid = Rabbit.tag
Rabbit.tag += 1

®w N o U A W N =

o tag used to give unique id to each new rabbit instance

Comp 201 Forman Christian University 16 / 56

def __init__(self ,age,parentl=None, Rabbit.tag
parent2=None) :
Animal.__init__(self, age)
self .parentl = parentl

self .parent2 = parent2

self.rid = Rabbit.tag
Rabbit.tag += 1

=} = A
Comp 201

def __init__(self ,age,parentl=None, Rabbit.tag
parent2=None) :
Animal.__init__(self, age) Age: 8
self .parentl = parentl

Parentl: None
Parent2: None
Rid: 1

self.parent2 = parent?2 rl
self.rid = Rabbit.tag
Rabbit.tag += 1

rl = Rabbit(8)

=} = A
Comp 201

def __init__(self ,age,parentl=None, Rabbit.tag
parent2=None) :

Animal.__init__(self, age) (Age: 8]
self .parentl = parentl Parentl: None
self.parent2 = parent?2 rl Parent2: None
self.rid = Rabbit.tag LRid; 1)
Rabbit.tag += 1 P <
Age: 6
Parentl: None
rl = Rabbit(8) r2 Parent2: None
r2 = Rabbit(6) Nl J

[m] = -) 8
Comp 201

it
«

)
€

def __init__(self ,age,parentl=None,
parent2=None) :
Animal.__init__(self, age)
self .parentl = parentl
self.parent2 = parent?2 rl
self.rid = Rabbit.tag

Rabbit.tag += 1

rl = Rabbit(8) r2
r2 = Rabbit(6)
r3 = Rabbit (10)

r3

Comp 201

Rabbit.tag

rAge:8

|Rid: 1

Parentl:
Parent2:

None
None

rAge:6

|Rid: 2

Parentl:
Parent2:

None
None

rAge:lO

Rid: 3

Parentl:
Parent2:

None
None

Forman Christian University

17 /56

Rabbit Getter Methods

1 class Rabbit (Animal):

2 tag = 1

3 def __init__(self, age, parentl=None
Animal.__init__(self, age)

5 self .parentl = parentl

6 self .parent2 = parent2

7 self .rid = Rabbit.tag

8 Rabbit.tag += 1

9 L e ittt

10 def get_rid(self):

11 return str(self.rid).zfill(5)

12 def get_parentl(self):

13 return self.parentl

14 def get_parent2(self):

15 return self.parent2

16 e

Comp 201

B

H o H O HH

parent2=None) :

Getter Methods
specific to the
Rabbit class

Forman Christian University

18 /56

Working with Your Own Types

1 def __add__(self, other):

2 # returning object of same type as this class
3 return Rabbit (0, self, other)

o Define + operator between two Rabbit instances

» For example:
rd = rl + r2
rl and r2 are Rabbit instances, combine to create r4

Comp 201 Forman Christian University 19 /56

Working with Your Own Types

1 def __add__(self, other):

2 # returning object of same type as this class
3 return Rabbit (0, self, other)

o Define + operator between two Rabbit instances

» For example:
rd = rl + r2
rl and r2 are Rabbit instances, combine to create r4

o r4d is a new Rabbit instance with age O

Comp 201 Forman Christian University 19 /56

Working with Your Own Types

1 def __add__(self, other):

2 # returning object of same type as this class
3 return Rabbit (0, self, other)

o Define + operator between two Rabbit instances

» For example:
rd = rl + r2
rl and r2 are Rabbit instances, combine to create r4

o r4d is a new Rabbit instance with age O

o r4 has self as one parent and other as the other parent

Comp 201 Forman Christian University 19 /56

Working with Your Own Types

1 def __add__(self, other):

2 # returning object of same type as this class
3 return Rabbit (0, self, other)

o Define + operator between two Rabbit instances

» For example:
rd = rl + r2
rl and r2 are Rabbit instances, combine to create r4

o r4d is a new Rabbit instance with age O
o r4 has self as one parent and other as the other parent

o In _init , parentl and parent2 are of type Rabbit
T Ry

Special Method to Compare Two Rabbits

o Decide that two rabbits are equal if they have the same two parents

1 def eq__(self, other):

2 parents_same = (self.pl.rid == other.pl.rid and
3 self .p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.pl.rid and
5 self.pl.rid == other.p2.rid)

6 return parents_same or parents_opp

Comp 201 Forman Christian University 20 /56

Special Method to Compare Two Rabbits

o Decide that two rabbits are equal if they have the same two parents

1 def __eq__(self, other):

2 parents_same| = (self.pl.rid == other.pl.rid and
3 self .p2.rid == other.p2.rid)

4 parents_opp | = (self.p2.rid == other.pl.rid and
5 self .pl.rid == other.p2.rid)

6 return parents_same or parents_opp

EBoobanschecMng E
'rl + r2or "

Comp 201 Forman Christian University 20 /56

Special Method to Compare Two Rabbits

o Decide that two rabbits are equal if they have the same two parents

1 def eq__(self, other):

2 parents_same = (self.pl.rid == other.pl.rid and
3 self .p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.pl.rid and
5 self.pl.rid == other.p2.rid)

6 return parents_same or parents_opp

o Compare ids of parents since ids are unique (due to class var)

Comp 201 Forman Christian University 20 /56

Special Method to Compare Two Rabbits

o Decide that two rabbits are equal if they have the same two parents

def eq__(self, other):

1

2 parents_same = (self.pl.rid == other.pl.rid and
3 self .p2.rid == other.p2.rid)

4 parents_opp = (self.p2.rid == other.pl.rid and
5 self.pl.rid == other.p2.rid)

6

return parents_same or parents_opp

o Compare ids of parents since ids are unique (due to class var)

o Note: you CAN’T compare objects directly (recursive if _eq)
Also, can't call on None (AttributeError when None.parentl)

Comp 201 Forman Christian University 20 /56

Big Idea

Class Variables are shared between all
Instances

If one instance changes it, it's changed for every instance.

Comp 201 Forman Christian University 21/56

Polymorphism

o = = E T 9Dacn

Comp 201

Quick Recap: Class Hierarchy

1 class Animal (object):

> def __init__(self, age):
3 self.age = age

4 def speak(self):

5 print ("some sound")

+ class Cat(Animal):

8 def meo(self):

0 print ("meow"
10

i1 class Dog(Animal):

12 def bark(self):

13 print ("woof")

Comp 201 Forman Christian University 23 /56

A Common Programming Problem

Suppose we want to make all our animals speak:

1 animals = [Cat(2), Dog(3), Rabbit(1l), Cat(5)]

N

3 # Without polymorphism, we’d need:

4 for animal in animals:

5 if isinstance(animal, Cat):

6 animal .meo ()

7 elif isinstance(animal, Dog):

8 animal.bark ()

9 elif isinstance(animal, Rabbit):
10 animal . squeak ()

11 # Need to add elif for EVERY new animal type!

Comp 201 Forman Christian University 24 /56

A Common Programming Problem

Suppose we want to make all our animals speak:

1 animals = [Cat(2), Dog(3), Rabbit (1),
2

3 # Without polymorphism, we’d need:

4 |for animal in animals:

5 if isinstance(animal, Cat):

6 animal .meo ()

7 elif isinstance(animal, Dog):

8 animal.bark ()

9 elif isinstance(animal, Rabbit):
10 animal.squeak ()

Cat (5)]

11 # Need to add elif for EVERY new animal type!

Comp 201

Must check type of each
animal manually - tedious!

Forman Christian University

24 /56

A Common Programming Problem

Suppose we want to make all our animals speak:

animals = [Cat(2), Dog(3), Rabbit (1), Cat(5)]

Without polymorphism, we’d need:
for animal in animals: ——”’////’—‘\\/
if isinstance(animal, Cat): | <., "~~~ "ot oTTmmomTmTT
animal .meo ()
elif isinstance(animal, Dog):
animal.bark ()
elif isinstance(animal, Rabbit):
10 animal.squeak ()
11 # Need to add elif for EVERY new animal type!

© © N o o A W N =

This is tedious and doesn’t scale!
Forman Christian University 24 /56

The Solution

Polymorphism
"Many forms”

The ability to use objects of different types through a uniform interface

Comp 201 Forman Christian University 25/56

Polymorphism

o Greek: "poly” = many, "morph” = form

Comp 201 Forman Christian University 26 /56

Polymorphism

o Greek: "poly” = many, "morph” = form

o The ability to treat objects of different types in a similar way

Comp 201 Forman Christian University 26 /56

Polymorphism

o Greek: "poly” = many, "morph” = form
o The ability to treat objects of different types in a similar way

e Same method name, different implementations

Comp 201 Forman Christian University 26 /56

Polymorphism

o Greek: "poly” = many, "morph” = form
o The ability to treat objects of different types in a similar way
e Same method name, different implementations

o Python automatically calls the correct version of the method based
on the object’s type

Comp 201 Forman Christian University 26 /56

Polymorphism in Action

© o N o u

11
12
13
14
15
16

class Animal:
def speak(self):
print ("some sound")

class Cat(Animal):
def speak(self):
print ("meow"

class Dog(Animal):
def speak(self):
print ("woof")

animals = [Cat(2), Dog(3), Cat(1)]
for animal in animals:
Each calls their own version!
animal.speak ()

Comp 201

Forman Christian University

27 /56

Polymorphism in Action

1 class Animal:

2 def speak(self):

3 print ("some sound") e _
4 ' Same method name in
5 class Cat(Animal): }——’////////”——% all subclasses '
6 (def speak(self): S L L LT T TR '
7 print ("meow"

8

o class Dog(Animal):

10 def speak(self):

11 print ("woof")

12

13 animals = [Cat(2), Dog(3), Cat(1)]
12 for animal in animals:

15 # Each calls their own version!
16 animal.speak ()

Comp 201 Forman Christian University 27 /56

Polymorphism in Action

1 class Animal:

2 def speak(self):

3 print ("some sound")

4

5 class Cat(Animal):

6 def speak(self):

7 print ("meow" + Python

8

o class Dog(Animal): ,

10 def speak(self): 2??%@9?£

11 print ("woof")

12

13 [animals = [Cat(2), Dog(3), Cat(1)]
12 |for animal in animals:

15 # Each calls their own version!
16 animal.speak ()

Comp 201

automatically

: calls the correct speak()

Forman Christian University

27 /56

Output

meow
woof
meow

Comp 201 Forman Christian University 28/56

Output

meow
woof
meow

o Python automatically determines which speak() to call
o Based on the actual type of the object

o We don't need to check types manually!

Comp 201 Forman Christian University 28 /56

Benefits of Polymorphism

@ Flexibility
» Write code that works with parent class but accepts any subclass

Comp 201 Forman Christian University 29 /56

Benefits of Polymorphism

@ Flexibility
» Write code that works with parent class but accepts any subclass

@ Extensibility
» Add new subclasses without changing existing code

Comp 201 Forman Christian University 29 /56

Benefits of Polymorphism
@ Flexibility
» Write code that works with parent class but accepts any subclass

@ Extensibility
» Add new subclasses without changing existing code

©® Code Reusability
» One function works with many types

Comp 201 Forman Christian University 29 /56

Benefits of Polymorphism

@ Flexibility
» Write code that works with parent class but accepts any subclass

@ Extensibility
» Add new subclasses without changing existing code

©® Code Reusability
» One function works with many types

@ Cleaner Code
» No need for long if-elif chains

Comp 201 Forman Christian University 29 /56

Example 1: Animal Shelter

1 def make_sound(animal):
3 animal.speak ()

s cat = Cat(2)

s dog = Dog(3)

; rabbit = Rabbit (1)

8

s make_sound(cat) # meow
v make_sound (dog) # woof

i1 make_sound(rabbit) # squeak

Comp 201 Forman Christian University 30/56

Example 1: Animal Shelter

1 (def make_sound (animal) :

animal .speak () i STt A
’ P « Function accepts Animal

. cat = Cat(2) » but works with any sub-
1 class :

s dog = Dog(3) .-
7 rabbit = Rabbit (1)

8

s make_sound(cat) # meow

v make_sound (dog) # woof

1 make_sound (rabbit) # squeak

Comp 201 Forman Christian University 30/56

Example 1: Animal Shelter

1 def make_sound(animal):
3 animal.speak ()

s cat = Cat(2)

s dog = Dog(3)

;7 rabbit = Rabbit(t) _
8 * Same function, differ-
o [make_sound (cat) # meow ' ent behaviors! :
0 |make_sound (dog) # woof /)‘ """"""""""
1 |make_sound (rabbit) # squeak

Comp 201 Forman Christian University 30/56

Example 2: Processing Collections

1 def morning_routine (animals):

3 for animal in animals:
4 animal.speak ()

¢ # Mix of different animal types
7 Z0Oo [Cat (2), Dog(3), Rabbit (1),
8 Cat (1), Dog(5)]

0 morning_routine (zoo)
u # Output: meow, woof, squeak, meow, woof

Comp 201 Forman Christian University 31/56

Example 3: More Complex Behavior

1 class Animal:

2 def __init__(self, age, name):
3 self.age = age

4 self.name = name

5 def introduce(self):

6 print (f"I’m {self.name}, I’m {self.age} years old")
7 self .speak ()

8

9 class Cat(Animal):

10 def speak(self):

11 print ("meow")

12

13 class Dog(Animal):

14 def speak(self):

15 print ("woof")

16

17 ¢ = Cat(2, "Fluffy")
18 c.introduce() # I’m Fluffy, I’m 2 years old
19 # meow

Comp 201 Forman Christian University 32/56

Example 3: More Complex Behavior

1 class Animal:

2 def __init__(self, age, name):

3 self.age = age

4 self.name = name

5 def introduce(self):

6 print (£"I’°m {self.pame}, I’m {self.age} years old")

7 self.speak () e e e e .
! ‘ \ Parent method calls poly- |
9 class Cat(Animal): i .
10 def speak(self): ' morphic method '
11 print ("meow") S E e e s s s s s s m o oo m !
12

13 class Dog(Animal):

14 def speak(self):

15 print ("woof")

16

17 ¢ = Cat(2, "Fluffy")
18 c.introduce() # I’m Fluffy, I’m 2 years old
19 # meow

Comp 201 Forman Christian University 32/56

You Try! Exercise 1

Create a Shape hierarchy with polymorphic area() method:

class Shape:
def area(self):
pass # To be overridden

1
2

3

4

5 class Rectangle (Shape):
6 def __init__(self, width, height):
7 # Your code here

8 def area(self):

9 # Your code here

11 class Circle(Shape):

12 def __init__(self, radius):

13 # Your code here

14 def area(self):

15 # Your code here (use 3.14 for pi)

Comp 201 Forman Christian University 33/56

You Try! Exercise 1 (continued)

Write a function that uses polymorphism:

1 def total_area(shapes):

2

3

4

5

6 # Your code here

7 pass

8

9 # Test your code:

10 shapes = [Rectangle(4, 5),
11 Circle (3),

12 Rectangle (2, 3)]

13 print(total_area(shapes)) # Should print: 54.26

Comp 201 Forman Christian University 34 /56

You Try! Exercise 2

Create an Employee hierarchy:

1 class Employee:

2 def __init__(self, name, base_salary):

3 self .name = name

4 self.base_salary = base_salary

5 def calculate_pay (self):

6 return self.base_salary

7

8 class Manager (Employee):

9 def __init__(self, name, base_salary, bonus):

10 # Your code: call parent __init__ and store bonus
11 def calculate_pay(self):

12 # Your code: return base_salary + bonus

13

14 class Salesperson(Employee):

15 def __init__(self, name, base_salary, commission):

16 # Your code: call parent __init__ and store commission
17 def calculate_pay(self):

-
o

Your code: return base_salary + commission

Comp 201

Forman Christian University

35/56

You Try! Exercise 2 (continued)

def print_payroll (employees):

Your code here
pass

10 # Test:
11 employees = [Employee("Alice", 50000), Manager("Bob", 60000, 10000),
12 Salesperson("Charlie", 40000, 15000)]

14 total = print_payroll(employees)
15 # Should print:

Alice: \$50000

Bob: \$70000

Charlie: \$55000

Total: \$175000

H H B H

Comp 201 Forman Christian University 36 /56

Abstract Base Classes

o F = = £ DAl

Comp 201

The Problem with Our Animal Class

o What if someone creates an Animal directly?

Comp 201 Forman Christian University 38/56

The Problem with Our Animal Class

o What if someone creates an Animal directly?

e a = Animal(5, "Generic")

Comp 201 Forman Christian University 38/56

The Problem with Our Animal Class

o What if someone creates an Animal directly?
ea = Animal (5, "Generic")

o What sound does a generic "animal”’ make?

Comp 201 Forman Christian University 38/56

The Problem with Our Animal Class

o What if someone creates an Animal directly?
ea = Animal (5, "Generic")
o What sound does a generic "animal”’ make?

o We want Animal to be a template only

Comp 201 Forman Christian University 38/56

The Problem with Our Animal Class

o What if someone creates an Animal directly?
ea = Animal (5, "Generic")

o What sound does a generic "animal”’ make?
o We want Animal to be a template only

o Force subclasses to implement speak ()

Comp 201 Forman Christian University 38/56

Solution
Abstract Base Class (ABC)

A class that:
o Cannot be instantiated directly
o Forces subclasses to implement certain methods

e Defines a contract for subclasses

Comp 201 Forman Christian University 39/56

Creating an Abstract Base Class

1 from abc import ABC, abstractmethod

3 class Animal (ABC):

4 def __init__(self, age, name):
5 self.age = age

6 self .name = name

7

8 @abstractmethod

9 def speak(self):

10 pass

11

12 def introduce(self):

13 print (£"I’m {self.name}, I’m {self.agel} years old")
14 self .speak ()

Comp 201 Forman Christian University 40 /56

Creating an Abstract Base Class

1 &rom abc import ABC, abstractmethod

v Import ABC tools 1

s class Animal (ABC): ! from Python '

4 def __init__(self, age, name): N)
5 self.age = age

6 self .name = name

7

8 @abstractmethod

0 def speak(self):

10 pass

11

12 def introduce(self):

13 print (£"I’m {self.name}, I’m {self.agel} years old")
14 self .speak ()

Comp 201 Forman Christian University 40 /56

Creating an Abstract Base Class

1 from abc import ABC, abstractmethod

e m m m e m e m e m o=

5 [class Animal (ABC) :} >EMhthﬂon1ABC

4 def __init__(self, age, name): 777
5 self.age = age

6 self .name = name

7

8 @abstractmethod

0 def speak(self):

10 pass

11

12 def introduce(self):

13 print (£"I’m {self.name}, I’m {self.agel} years old")
14 self .speak ()

Comp 201 Forman Christian University 40 /56

Creating an Abstract Base Class

1 from abc import ABC, abstractmethod

3 class Animal (ABC):

4 def __init__(self, age, name):

5 self.age = age

6 self .name = name
7 ' I\/Iark method as abstract

’ Cabstractmethod :— subclasses must imple-
9 def speak(self): ' ment it
10 pass R

11

12 def introduce(self):
13 print (£"I’m {self.name}, I’m {self.age} years
14 self .speak ()

Comp 201

Forman Christian University

old")

40/56

Cannot Instantiate Abstract Classes

1 from abc import ABC, abstractmethod

5 class Animal (ABC):

4 @abstractmethod

5 def speak(self):

6 pass

7

s # This will cause an ERROR:

o a = Animal (5, "Generic")

10

n # TypeError: Can’t instantiate abstract

=+

12 class Animal with abstract method speak

Comp 201 Forman Christian University 41/56

Cannot Instantiate Abstract Classes

1 from abc import ABC, abstractmethod

5 class Animal (ABC):

4 Q@abstractmethod
5 def speak(self):
6 pass . _

Python prevents creat-
s # This will cause an ERROR: ing Animal objects!
o @ = Animal (5, "Generic")}—" ~ TTTTTTTTToommoooooos ’

n # TypeError: Can’t instantiate abstract
12 # class Animal with abstract method speak

PR,

Comp 201 Forman Christian University 41/56

Subclasses Must Implement Abstract Methods

1

10

11

12

class Cat(Animal):
def speak(self):
print ("meow")

class Dog(Animal):
def speak(self):
print ("woof")

Now these work fine:
= Cat(2, "Fluffy")

= Dog (3, "Buddy")
.speak () # meow
.speak () # woof

Qa0 a0

Comp 201

Forman Christian University

42/56

Subclasses Must Implement Abstract Methods

1 class Cat(Animal):

2 @ef speak (self): gmTmmmmmmmmmsmemmmmmes
, print ("meow) ' Subclass implements

: the abstract method

5 class Dog(Animal):
6 def speak(self):
7 print ("woof")

Now these work fine:
= Cat(2, "Fluffy")

= Dog (3, "Buddy")
.speak () # meow
.speak () # woof

10

11

12

Qa0 a0

13

Comp 201 Forman Christian University 42 /56

Forgetting to Implement Causes Error

1 class Rabbit (Animal):

2 def hop(self):

3 print ("hopping")

4 # Forgot to implement speak()!

5

o # This will cause an ERROR:

7 r = Rabbit (1, "Fluffy")

8

o # TypeError: Can’t instantiate abstract

o # class Rabbit with abstract method speak

Comp 201 Forman Christian University 43 /56

Forgetting to Implement Causes Error

1 class Rabbit (Animal): Missing required

2 def hop(self): speak () method
3 print ("hopping") TTTTTTTHETTTTOOC
4 (# Forgot to implement speak()!}——f/)T

5

o # This will cause an ERROR:

7 r = Rabbit (1, "Fluffy")

8

o # TypeError: Can’t instantiate abstract

o # class Rabbit with abstract method speak

Comp 201 Forman Christian University 43 /56

Forgetting to Implement Causes Error

1 class Rabbit (Animal):

2 def hop(self):
3 print ("hopping")
4 # Forgot to implement speak()!

¢ # This will cause an ERROR:
7 & = Rabbit (1, "Fluffy")

Python catches the er-
ror immediately!

PR

o # TypeError: Can’t instantiate abstract
o # class Rabbit with abstract method speak

Comp 201 Forman Christian University 43 /56

Why Use Abstract Classes?

@ Enforce consistency - all subclasses have required methods
@ Catch errors early - at instantiation, not when method is called
@ Document intent - clearly shows which methods subclasses need

@ Prevent misuse - can't create incomplete objects

Comp 201 Forman Christian University 44 /56

Common Pitfalls

o F = = £ DAl

Comp 201

Pitfall 1: Forgetting to Override

1 class Animal:
2 def speak(self):
3 print ("some sound")

s class Cat(Animal):
6 def meow(self): # Wrong method name!

7 print ("meow"

o ¢ = Cat(2)
0 c.speak() # Prints "some sound" (not "meow")

Comp 201 Forman Christian University 46 /56

Pitfall 1: Forgetting to Override

1 class Animal:

2 def speak(self): e -
3 print ("some sound") ! Must use same nmnei
4 . as parent method! '
5 class Cat(Animal): il ’
6 (def meow(self): Wrong method name!

7 print ("meow"

o ¢ = Cat(2)
0 c.speak() # Prints "some sound" (not "meow")

Comp 201 Forman Christian University 46 /56

Pitfall 2: Wrong Method Signature

1

12

13

class Animal:
def speak(self):
print ("some sound")

class Cat(Animal):
def speak(self, volume): # Extra parameter!
print (f"meow at volume {volumel}")

def make_sound(animal):
animal .speak() # Error! Missing argument

c = Cat(2)
make_sound (c) # TypeError!

Comp 201 Forman Christian University

47 /56

Pitfall 2: Wrong Method Signature

1 class Animal: -
2 (def speak(self):
3 print ("some sound")

s class Cat(Animal):
6 (def speak(self, volume):}”# Extra parameter!
7 print (f"meow at volume {volumel}")

o def make_sound(animal):

10 animal .speak() # Error! Missing argument
11

2 ¢ = Cat(2)

15 make_sound(c) # TypeError!

Comp 201 Forman Christian University 47 /56

Key Principles

® Use the same method name in parent and child
@ Keep the same parameters (method signature)
@ Write functions that accept parent type but work with any subclass

@ Python handles the rest automatically!

Comp 201 Forman Christian University 48 /56

Duck Typing in Python

Duck Typing

o Python’s approach to polymorphism is " duck typing”

Comp 201 Forman Christian University 50 /56

Duck Typing

o Python’s approach to polymorphism is " duck typing”

o "If it walks like a duck and quacks like a duck, then it must be a
duck”

Comp 201 Forman Christian University 50 /56

Duck Typing

o Python’s approach to polymorphism is " duck typing”

o "If it walks like a duck and quacks like a duck, then it must be a
duck”

o Python doesn't care about the type of an object

Comp 201 Forman Christian University 50 /56

Duck Typing

o Python’s approach to polymorphism is " duck typing”

o "If it walks like a duck and quacks like a duck, then it must be a
duck”

o Python doesn't care about the type of an object

o Python only cares if the object has the right methods

Comp 201 Forman Christian University 50 /56

Duck Typing

o Python’s approach to polymorphism is " duck typing”

o "If it walks like a duck and quacks like a duck, then it must be a
duck”

o Python doesn't care about the type of an object
o Python only cares if the object has the right methods

o Objects don't even need to inherit from the same parent!

Comp 201 Forman Christian University 50 /56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print ("woof")

4

5 class Robot: # Not related to Animal!
6 def speak(self):

7 print ("beep boop")

8

9 class Person:

10 def speak(self):

11 print ("hello")

12

13 def make_speak(thing):

14 thing.speak () # Works with anything that has speak ()
15

16 make_speak(Dog()) # woof

17 make_speak (Robot ()) # beep boop

18 make_speak(Person()) # hello

Comp 201 Forman Christian University 51/56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print ("woof") _
: No inherit lation- »
5 class Robot: (# Not related to Animal !)_)l O Inheritance relation- |
6 def speak(self): . Sh|p needed! .
7 print ("beep boop") e e meememmaeaa ’
8

9 class Person:

10 def speak(self):

11 print ("hello")

12

13 def make_speak(thing):

14 thing.speak () # Works with anything that has speak ()

15

16 make_speak(Dog()) # woof

17 make_speak (Robot ()) # beep boop

18 make_speak(Person()) # hello

Comp 201 Forman Christian University 51/56

Duck Typing Example

1 class Dog:

2 def speak(self):

3 print ("woof")

4

5 class Robot: # Not related to Animal!

6 def speak(self): .
7 rint ("beep boop") ! - . . ;
; P poboob + Works with any object with a |
9 class Person: ! Speak() method :
10 def speak(self): 1 !
11 print ("hello")

12

13 (def make_speak(thing):

14 thing.speak() # Works with anything that has speak ()

15

16 make_speak(Dog()) # woof

17 make_speak (Robot ()) # beep boop

18 make_speak(Person()) # hello

Comp 201 Forman Christian University 51/56

Summary

F = = £ DAl

o
Comp 201

Summary: Key Takeaways

@ Polymorphism = “many forms”

@ Write code that works with parent class, automatically works with
all subclasses

©@ Same method name, different implementations
@ Python uses duck typing - only cares about methods, not types

@ Makes code more flexible, extensible, and reusable

Comp 201 Forman Christian University 53 /56

Remember

Polymorphism allows you to write
functions that work with many different
types of objects through a common
interface

This is one of the most powerful features of OOP!

Comp 201 Forman Christian University 54 /56

Why OOP over Procedural?

o Modularity — Code organized into self-contained objects
o Reusability — Inheritance allows code reuse
o Maintainability — Changes isolated to specific classes

o Flexibility — Polymorphism enables extensible design

Comp 201 Forman Christian University 55 /56

Questions?

Comp 201 Forman Christian University 56 /56

	Quick Recap
	Inheritance
	Polymorphism
	Abstract Base Classes
	Common Pitfalls
	Duck Typing in Python
	Summary

