
Programming 2: OOP (Lecture 1)
Classes, Objects, Encapsulation & Abstraction

Comp 201

Forman Christian University

Course Information

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 2 / 58

Instructor

Fakhir Shaheen
▸ fakhirshaheen@fccollege.edu.pk
▸ linkedin.com/in/fakhirshaheen

Office:
▸ S-426 (E)
▸ Hours: TR 9:15 am - 11:00 am

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 3 / 58

Grading Breakdown

Component Percentage

Assignments/Project 15%

Labs 10%

Quizzes 15%

Mid 25%

Final 35%

Total 100%

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 4 / 58

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 5 / 58

Today’s Agenda

1 What is OOP?
2 Classes and Objects
3 Encapsulation
4 Data Abstraction
5 Composition

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 6 / 58

What is OOP?

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 7 / 58

Object Oriented Programming

OOP is a method of software design and programming
▸ revolve around the concept of objects

OOP but using pure C:
▸ Linux Kernel
▸ GTK+
▸ Doom

Set of programming practices (language, syntax

independent)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 8 / 58

Object Oriented Programming

OOP is a method of software design and programming
▸ revolve around the concept of objects

OOP but using pure C:
▸ Linux Kernel
▸ GTK+
▸ Doom

Set of programming practices (language, syntax

independent)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 8 / 58

Object Oriented Programming

OOP is a method of software design and programming
▸ revolve around the concept of objects

OOP but using pure C:
▸ Linux Kernel
▸ GTK+
▸ Doom

Set of programming practices (language, syntax

independent)
Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 8 / 58

The Object Metaphor

Objects:
1 are like black boxes

2 have state (data) and behavior (methods)
3 have unique identities
4 can interact with each other by sending messages

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 9 / 58

The Object Metaphor

Objects:
1 are like black boxes
2 have state (data) and behavior (methods)
3 have unique identities

4 can interact with each other by sending messages

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 9 / 58

The Object Metaphor

Objects:
1 are like black boxes
2 have state (data) and behavior (methods)
3 have unique identities
4 can interact with each other by sending messages

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 9 / 58

OOP vs Procedural Programming

Procedural

Focus on functions

Data and functions are separate

Top-down approach

Hard to manage large programs

Example: C, early Python scripts

Object-Oriented

Focus on objects

Data and functions bundled
together

Bottom-up approach

Easier to manage complexity

Example: Python classes, Java

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 10 / 58

OOP vs Procedural Programming

Procedural

Focus on functions

Data and functions are separate

Top-down approach

Hard to manage large programs

Example: C, early Python scripts

Object-Oriented

Focus on objects

Data and functions bundled
together

Bottom-up approach

Easier to manage complexity

Example: Python classes, Java

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 10 / 58

Object-Oriented Programming (OOP)

What is OOP?

A programming paradigm focused on objects - combining data and behavior to model
real-world systems.

Encapsulation - Combine data and methods

Abstraction - Hide internal complexity

Inheritance - Reuse and extend classes

Polymorphism - One interface, many behaviors

Design principles for clean, reusable code

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 11 / 58

Object-Oriented Programming (OOP)

What is OOP?

A programming paradigm focused on objects - combining data and behavior to model
real-world systems.

Encapsulation - Combine data and methods

Abstraction - Hide internal complexity

Inheritance - Reuse and extend classes

Polymorphism - One interface, many behaviors

Design principles for clean, reusable code

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 11 / 58

Data Abstraction

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 12 / 58

Abstraction

Hiding the details, showing only the necessary

Expressions:

1 pi = 355/113

2 area = pi * (R**2)

3 circ = 2 * pi * R

Functions:

1 def add(x,y):

2 return x+y

3 add(1,2)

4 add(4,5)

add
1 2

3

(multiple) inputs

output

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 13 / 58

Abstraction

Hiding the details, showing only the necessary

Expressions:

1 pi = 355/113

2 area = pi * (R**2)

3 circ = 2 * pi * R

Functions:

1 def add(x,y):

2 return x+y

3 add(1,2)

4 add(4,5)

add
1 2

3

(multiple) inputs

output

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 13 / 58

Abstraction

Hiding the details, showing only the necessary

Expressions:

1 pi = 355/113

2 area = pi * (R**2)

3 circ = 2 * pi * R

Functions:

1 def add(x,y):

2 return x+y

3 add(1,2)

4 add(4,5)

add
1 2

3

(multiple) inputs

output

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 13 / 58

Abstraction

Hiding the details, showing only the necessary

Expressions:

1 pi = 355/113

2 area = pi * (R**2)

3 circ = 2 * pi * R

Functions:

1 def add(x,y):

2 return x+y

3 add(1,2)

4 add(4,5)

add
1 2

3

(multiple) inputs

output

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 13 / 58

Compound Data

Many things in reality are made of compund data

(non-scalar)

Try to Identify components of each:

▸ Vector →

▸ Student →

▸ Rational →

▸ Book →

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 14 / 58

Compound Data

Many things in reality are made of compund data

(non-scalar)

Try to Identify components of each:

▸ Vector → x,y,z

▸ Student → name, rollno, gpa

▸ Rational → num, denom

▸ Book → title, author, price

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 14 / 58

Data Abstraction

We want to do the same with data that we did with code

Put individual components (data) in a black box

return x*x

def square(x): Vector

x = 1
y = 0
z = 0

Code Abstraction Data Abstraction

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 15 / 58

Data Abstraction

We want to do the same with data that we did with code

Put individual components (data) in a black box

return x*x

def square(x): Vector

x = 1
y = 0
z = 0

Code Abstraction Data Abstraction

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 15 / 58

Example:

x

y

a⃗

⃗b

(1,1)

(3,3)

From high school math:

c⃗ = a⃗ + ⃗b

⃗d = a⃗ − ⃗b

We’re treating a⃗ and ⃗b as

black boxes

Not concerned with their

internal details

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 16 / 58

Example:

x

y

a⃗

⃗b

(1,1)

(3,3)

From high school math:

c⃗ = a⃗ + ⃗b

⃗d = a⃗ − ⃗b

We’re treating a⃗ and ⃗b as

black boxes

Not concerned with their

internal details

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 16 / 58

Big Idea

Data Abstraction:
Seperating how data is represented from how it is

manipulated

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 17 / 58

Example: Rational Numbers

Have the form: numerator
denominator

A rational 1/3 can’t be represented exactly on a

computer:

>>> 1/3

0.3333333333333333

>>> 1/3 == 0.333333333333333300000

True

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 18 / 58

Example: Rational Numbers

Have the form: numerator
denominator

A rational 1/3 can’t be represented exactly on a

computer:

>>> 1/3

0.3333333333333333

>>> 1/3 == 0.333333333333333300000

True

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 18 / 58

Rational Numbers

But can represent exactly as compound data (non-scalar)

Imagine the following functions (again, black boxes):

rational(n,d) # constructor , returns rational

numer(x) # accessor function

denom(x) # accessor function

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 19 / 58

Rational Numbers

So far we have three functions:

rational(n,d) numer(x) denom(x)

No idea how these functions are implemented

No idea how a rational number stores numerator and

denominator

But we can still use these as black boxes to build more

complex functions

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 20 / 58

Rational Numbers

So far we have three functions:

rational(n,d) numer(x) denom(x)

No idea how these functions are implemented

No idea how a rational number stores numerator and

denominator

But we can still use these as black boxes to build more

complex functions

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 20 / 58

Rational Numbers

So far we have three functions:

rational(n,d) numer(x) denom(x)

No idea how these functions are implemented

No idea how a rational number stores numerator and

denominator

But we can still use these as black boxes to build more

complex functions
Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 20 / 58

Rational Numbers

Adding two rational numbers:

1

2
+

2

3
=

3 × 1 + 2 × 2

2 × 3
=

7

6

Complete the following function:

def add_rationals(x, y):

’’’ Adds two rational numbers x,y

Returns: A rational number ’’’

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 21 / 58

Rational Numbers

Adding two rational numbers:

1

2
+

2

3
=

3 × 1 + 2 × 2

2 × 3
=

7

6

Complete the following function:

def add_rationals(x, y):

’’’ Adds two rational numbers x,y

Returns: A rational number ’’’

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 21 / 58

Rational Numbers

Solution:

def add_rationals(x, y):

’’’ Adds two rational numbers x,y

Returns: A rational number ’’’

nx , dx = numer(x), denom(x)

ny , dy = numer(y), denom(y)

return rational(nx * dy + ny * dx, dx*dy)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 22 / 58

Rational Numbers: You Try!

def mul_rationals(x, y):

’’’ Multiplies two rational numbers x,y

Returns: A rational number ’’’

def print_rational(x):

’’’ Prints a rational number as n/d ’’’

def rationals_are_equal(x, y):

’’’ Checks if two rational numbers are

equal ’’’

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 23 / 58

Rational Numbers

1 def add_rationals(x, y):

2 ...

3

4 def mul_rationals(x, y):

5 return rational(numer(x)*numer(y), denom(x)*denom(y))

6

7 def print_rational(x):

8 print(numer(x), ’/’, denom(x))

9

10 def rationals_are_equal(x, y):

11 return numer(x) * denom(y) == numer(y) * denom(x)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 24 / 58

Rational Numbers

Data Abstraction: separation of

1 how data is manipulated ✓

▸ rational, numer, denom
▸ add rationals, mul rationals, print rational,

rationals are equal

2 how data is represented ←

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 25 / 58

Rational Numbers

Data Abstraction: separation of

1 how data is manipulated ✓

▸ rational, numer, denom
▸ add rationals, mul rationals, print rational,

rationals are equal

2 how data is represented ←

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 25 / 58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d):

return [n, d]

def numer(x):

return x[0]

def denom(x):

return x[1]

n d

numer

rational

denom

Only way to access the data is through accessors

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 26 / 58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d):

return [n, d]

def numer(x):

return x[0]

def denom(x):

return x[1]

n d

numer

rational

denom

Only way to access the data is through accessors

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 26 / 58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d):

return [n, d]

def numer(x):

return x[0]

def denom(x):

return x[1]

n d

numer

rational

denom

Only way to access the data is through accessors
Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 26 / 58

Rational Numbers

>>> half = rational(1, 2)

>>> print_rational(half)

1 / 2

>>> third = rational(1, 3)

>>> print_rational(mul_rationals(half , third))

1 / 6

>>> print_rational(add_rationals(third , third))

6 / 9

Some rationals are not in simplest form

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 27 / 58

Rational Numbers

>>> half = rational(1, 2)

>>> print_rational(half)

1 / 2

>>> third = rational(1, 3)

>>> print_rational(mul_rationals(half , third))

1 / 6

>>> print_rational(add_rationals(third , third))

6 / 9

Some rationals are not in simplest form

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 27 / 58

Rational Numbers

>>> half = rational(1, 2)

>>> print_rational(half)

1 / 2

>>> third = rational(1, 3)

>>> print_rational(mul_rationals(half , third))

1 / 6

>>> print_rational(add_rationals(third , third))

6 / 9

Some rationals are not in simplest form

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 27 / 58

Rational Numbers

>>> half = rational(1, 2)

>>> print_rational(half)

1 / 2

>>> third = rational(1, 3)

>>> print_rational(mul_rationals(half , third))

1 / 6

>>> print_rational(add_rationals(third , third))

6 / 9

Some rationals are not in simplest form
Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 27 / 58

Rational Numbers

Converting to simplest form:

from fractions import gcd

def rational(n, d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))

2 / 3 ZERO change required elsewhere

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 28 / 58

Rational Numbers

Converting to simplest form:

from fractions import gcd

def rational(n, d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))

2 / 3

ZERO change required elsewhere

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 28 / 58

Rational Numbers

Converting to simplest form:

from fractions import gcd

def rational(n, d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))

2 / 3 ZERO change required elsewhere

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 28 / 58

Abstraction Barriers

Each function in last column enforce an abstraction barrier

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 29 / 58

Abstraction Barriers

n d

numer

rational

denom

add

mul

print
equal

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 30 / 58

Big Idea

Abstraction Barrier Violation happens
when a higher-level function is bypassed to
use lower-level implementation details.

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 31 / 58

Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58

Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58

Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58

Abstraction Barrier Violation

n d

numer

rational

denom

Only accessors and constructors
should access n,d directly

These operations should not
access n,d directly

square should only access
rational numbers through add,
mul, equal, print

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 33 / 58

Abstraction Barrier Violation

n d

numer

rational

denom

add

mul

print
equal

Only accessors and constructors
should access n,d directly

These operations should not
access n,d directly

square should only access
rational numbers through add,
mul, equal, print

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 33 / 58

Abstraction Barrier Violation

n d

numer

rational

denom

add

mul

print
equal

square Only accessors and constructors
should access n,d directly

These operations should not
access n,d directly

square should only access
rational numbers through add,
mul, equal, print

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 33 / 58

Abstraction Barrier Violation

n d

numer

rational

denom

add

mul

print
equal

square
square_once Abstraction barrier violated Once

(Higher-level functions bypassed)

def sq_violate_once(x):

return rational(

numer(x)*numer(x),

denom(x)*denom(x))

Abstraction barrier violated Twice

def sq_violate_twice(x):

return [x[0]*x[0],

x[1]*x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 34 / 58

Abstraction Barrier Violation

n d

numer

rational

denom

add

mul

print
equal

square
square_once

square_twice
Abstraction barrier violated Once
(Higher-level functions bypassed)

def sq_violate_once(x):

return rational(

numer(x)*numer(x),

denom(x)*denom(x))

Abstraction barrier violated Twice

def sq_violate_twice(x):

return [x[0]*x[0],

x[1]*x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 34 / 58

You Try!

Right now our rational numbers are internally represented as

lists.
1 Change the internal representation to a dictionary.
2 What portion of the entire program really needed to change?

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 35 / 58

The Power of Abstraction

Changing the representation of rational numbers requires no
changes to any other parts of code:

def rational(n, d):

return {"numerator":n, "denominator":d}

def numer(x):

return x["numerator"]

def denom(x):

return x["denominator"]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 36 / 58

You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2]

2 p = make point(3,4)

y = p[1]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 37 / 58

You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2] # use a Constructor! make point(x,y)

2 p = make point(3,4)

y = p[1]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 37 / 58

You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2] # use a Constructor! make point(x,y)

2 p = make point(3,4)

y = p[1]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 37 / 58

You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2] # use a Constructor! make point(x,y)

2 p = make point(3,4)

y = p[1] # 1st level violated. Use accessors
y = get y(p)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 37 / 58

You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

def distance(p1, p2):

return ((p1[0]-p2[0]) **2 +

(p1[1]-p2[1]) **2) **0.5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 38 / 58

You Try! (solution)

1 One level violated
▸ Bypassing the higher-level functions (accessors)
▸ Directly accessing internal data (very bad)

def distance(p1, p2):

return ((get_x(p1) - get_x(p2))**2 +

(get_y(p1) - get_y(p2))**2) **0.5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 39 / 58

You Try!

Check if a point is within a circle:

C

p

ra
diu
s

distance

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 40 / 58

You Try!

Check if a point is within a circle. Identify Abstraction
Barrier Violations:

def is_within_circle(point ,center ,radius):

dist = ((center [0] - point [0]) **2 +

(center [1] - point [1]) **2) **0.5

return dist <= radius

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 41 / 58

You Try!

x y

get_x

make_point

get_y

distance

is_within_circle

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 42 / 58

You Try!

Solution:

def is_within_circle(point ,center ,radius):

return distance(point ,center) <= radius

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 43 / 58

Circle class

1 class Point:

2 ...

3 class Circle:

4 def __init__(self ,x,y,radius):

5 self.x = x

6 self.y = y

7 self.radius = radius

C

p

ra
diu
s

distance

Abstraction violation
could’ve used ‘Point’ class

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 44 / 58

Circle class

1 class Point:

2 ...

3 class Circle:

4 def __init__(self ,center ,radius):

5 self.center = center

6 self.radius = radius

radius

x,y

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 45 / 58

Encapsulation

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 46 / 58

Abstraction

x y

get_x

make_point

get_y

distance

is_within_circle

Encapsulation

x y

get_x

make_point

get_y

distance

is_within_circle

Can't get in
:'-(

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 47 / 58

Abstraction

x y

get_x

make_point

get_y

distance

is_within_circle

Encapsulation

x y

get_x

make_point

get_y

distance

is_within_circle

Can't get in
:'-(

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 47 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name) # access data from outside

7 p.name = ’Ali’ # change data from outside

8 p.age = 20 # add new data from outside

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 48 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name) # access data from outside

7 p.name = ’Ali’ # change data from outside

8 p.age = 20 # add new data from outside

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 48 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name) # access data from outside

7 p.name = ’Ali’ # change data from outside

8 p.age = 20 # add new data from outside

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 48 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name) # access data from outside

7 p.name = ’Ali’ # change data from outside

8 p.age = 20 # add new data from outside

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 48 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name)

7 p.name = ’Ali’

8 p.age = 20

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 49 / 58

Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name)

7 p.name = ’Ali’

8 p.age = 20

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 49 / 58

Classes and Objects

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 50 / 58

Class: A Blueprint

A class is a blueprint/template for creating objects

An object is an instance of a class
Analogy:

▸ Class = Cookie Cutter
▸ Object = Cookie

One class → Many objects (each with its own data)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 51 / 58

Class: A Blueprint

A class is a blueprint/template for creating objects

An object is an instance of a class

Analogy:

▸ Class = Cookie Cutter
▸ Object = Cookie

One class → Many objects (each with its own data)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 51 / 58

Class: A Blueprint

A class is a blueprint/template for creating objects

An object is an instance of a class
Analogy:

▸ Class = Cookie Cutter
▸ Object = Cookie

One class → Many objects (each with its own data)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 51 / 58

Class: A Blueprint

A class is a blueprint/template for creating objects

An object is an instance of a class
Analogy:

▸ Class = Cookie Cutter
▸ Object = Cookie

One class → Many objects (each with its own data)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 51 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

keyw
ord

class
name

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

const
ructo

r

<self>

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

p1

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

publi
c interf

ace

<self>
x → 1
y → 2

p1

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1The first parameter is
always ‘self’

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1‘self’ is passed auto-
matically by Python

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

Accessing attributes us-
ing the dot notation

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

<obj>.<attribute>
note: no parameters passes

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

p1

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58

Big Idea

The init () method is invoked
automatically when an object is created.

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 53 / 58

Big Idea

The self parameter is the object which
invokes the method using the dot operator.

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 54 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 1
y → 2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 1
y → 2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 1
y → 2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

p2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

p2

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5

p1

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())

<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5Observe:

Methods have one copy.
They are shared between
different objects. Hence the
‘ self’ parameter

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 55 / 58

Big Idea

The methods are created only once.
Different objects share the same methods

by passing themselves as ‘self’.

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 56 / 58

You Try!

Create a class Rectangle with attributes length and

width.

Add methods to calculate the area and perimeter of the

rectangle.

Create two rectangle objects and test the methods.

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 57 / 58

Questions?

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 58 / 58

	Course Information
	What is OOP?
	Data Abstraction
	Encapsulation
	Classes and Objects

