Programming 2: OOP (Lecture 1)
Classes, Objects, Encapsulation & Abstraction

Comp 201

Forman Christian University

Course Information

SR = E T 9ac

Comp 201

Instructor

o Fakhir Shaheen

» fakhirshaheen@fccollege.edu.pk
» linkedin.com/in/fakhirshaheen

o Office:
» 3-426 (E)
» Hours: TR 9:15 am - 11:00 am

Comp 201 Forman Christian University 3/58

Grading Breakdown

Component Percentage
Assignments/Project 15%
Labs 10%
Quizzes 15%

Mid 25%
Final 35%
Total 100%

Comp 201 Forman Christian University 4/58

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, En Forman Christian University 5/58

Today’s Agenda

@ What is OOP?

@ Classes and Objects
@ Encapsulation

© Data Abstraction

@ Composition

Comp 201 Forman Christian University 6/58

What is OOP?

Comp 201

Object Oriented Programming

o OOP is a method of software design and programming
. revolve around the concept of objects

Comp 201 Forman Christian University 8/58

Object Oriented Programming

o OOP is a method of software design and programming
- revolve around the concept of objects

o OOP but using pure C:
. Linux Kernel
- GTK+

. Doom

Comp 201 Forman Christian University 8/58

Object Oriented Programming

o OOP is a method of software design and programming
- revolve around the concept of objects

o OOP but using pure C:
. Linux Kernel
- GTK+

. Doom

o Set of programming practices (language, syntax

independent)
T e e

The Object Metaphor

Objects:
o are like black boxes

Comp 201 Forman Christian University 9/58

The Object Metaphor

Objects:

@ are like black boxes

@ have state (data) and behavior (methods)
@ have unique identities

Comp 201 Forman Christian University 9/58

The Object Metaphor

Objects:

@ are like black boxes

@ have state (data) and behavior (methods)

@ have unique identities

@ can interact with each other by sending messages

Comp 201 Forman Christian University 9/58

OOP vs Procedural Programming

Procedural
o Focus on functions
o Data and functions are separate
e Top-down approach
o Hard to manage large programs

o Example: C, early Python scripts

Comp 201 Forman Christian University 10 /58

OOP vs Procedural Programming

Object-Oriented

o Focus on objects

Procedural

o Focus on functions _
e Data and functions bundled

o Data and functions are separate
together

o Top-down approach o Bottom-up approach

Hard to manage large programs i .
° & 8¢ Prog o Easier to manage complexity

; h '
o Example: C, early Python scripts o Example: Python classes, Java

Comp 201 Forman Christian University 10 /58

Object-Oriented Programming (OOP)

What is OOP?
A programming paradigm focused on objects - combining data and behavior to model J

real-world systems.

Comp 201 Forman Christian University 11/58

Object-Oriented Programming (OOP)

What is OOP?
A programming paradigm focused on objects - combining data and behavior to model ‘

real-world systems.

e Encapsulation - Combine data and methods

e Abstraction - Hide internal complexity

e Inheritance - Reuse and extend classes

e Polymorphism - One interface, many behaviors

Design principles for clean, reusable code

Comp 201 Forman Christian University 11/58

Data Abstraction

o F = = £ DAl

Comp 201

Abstraction

Comp 201 Forman Christian University 13 /58

Abstraction

o Hiding the details, showing only the necessary

Comp 201 Forman Christian University 13 /58

Abstraction

o Hiding the details, showing only the necessary

o Expressions:

. pi = 355/113
> area = pi * (R*%2)
3 circ = 2 *x pi * R

Comp 201 Forman Christian University 13 /58

Abstraction

o Hiding the details, showing only the necessary
o Expressions: (multiple) inputs

. pi = 355/113 ,_ \
11— 2

> area = pi * (R*%*2)
s circ = 2 * pi * R
e Functions: add
1 def add(x,y):
2 return x+y 3

3 add(l ,2) Outpu
+ add(4,5)

Comp 201 Forman Christian University 13 /58

Compound Data

o Many things in reality are made of compund data
(non-scalar)

o Try to Identify components of each:
- Vector —
- Student —

- Rational —
- Book —

Comp 201 Forman Christian University 14 /58

Compound Data

o Many things in reality are made of compund data
(non-scalar)

o Try to Identify components of each:
- Vector — x,y,z
- Student — name, rollno, gpa

- Rational — num, denom
- Book — title, author, price

Comp 201 Forman Christian University 14 /58

Data Abstraction

o We want to do the same with data that we did with code
o Put individual components (data) in a black box

Comp 201 Forman Christian University 15 /58

Data Abstraction

o We want to do the same with data that we did with code
o Put individual components (data) in a black box

|
def square (x): : Vector
' x =1

return x*x ' - 0
} | Y =

I z =0

|
Code Abstraction Data Abstraction

Comp 201 Forman Christian University 15 /58

Example:

From high school math:
y oC=d+h

a-b

(@l
°
®
Q,
I

(33)

Ly

(11)

» X

Comp 201

Forman Christian University 16 /58

Example:

From high school math:
Y +b

~b

o C

(@l
Q,
Il Il
Wy

[] °
(3.3)

We're treating 4 and b as
black boxes

X Not concerned with their
internal details

Ly

(11)

Comp 201 Forman Christian University 16 /58

Big ldea

Data Abstraction:
Seperating how data is represented from how it is
manipulated

Comp 201 Forman Christian University 17 /58

Example: Rational Numbers

numerator

o Have the form: Tenominator

Comp 201 Forman Christian University 18 /58

Example: Rational Numbers

numerator

o Have the form: Tenominator

o A rational 1/3 can’t be represented exactly on a

computer:
>>> 1/3
0.3333333333333333
>>> 1/3 == 0.333333333333333300000
True

Comp 201 Forman Christian University 18 /58

Rational Numbers

o But can represent exactly as compound data (non-scalar)

o Imagine the following functions (again, black boxes):

rational(n,d) # constructor, returns rational
numer (x) # accessor function

denom(x) # accessor function

Comp 201 Forman Christian University 19 /58

Rational Numbers

So far we have three functions:

rational (n,d) numer (x) denom (x)

Comp 201 Forman Christian University 20/58

Rational Numbers

So far we have three functions:

rational(n,d) numer (x) denom (x)

o No idea how these functions are implemented

o No idea how a rational number stores numerator and
denominator

Comp 201 Forman Christian University 20/58

Rational Numbers

So far we have three functions:

rational(n,d) numer (x) denom (x)

o No idea how these functions are implemented

o No idea how a rational number stores numerator and
denominator

o But we can still use these as black boxes to build more

complex functions
Forman Christian University 2058

Rational Numbers

Adding two rational numbers:

3x1+2x2 7
2x3 6

1 2
— 4+ — =
2 3

Comp 201 Forman Christian University 21/58

Rational Numbers

Adding two rational numbers:

1 2 3x1+2x2 7
2 3 2x3 "6

Complete the following function:

def add_rationals(x, y):
>?7 Adds two rational numbers x,y
Returns: A rational number 7’’’

Comp 201 Forman Christian University 21/58

Rational Numbers

Solution:

def add_rationals(x, y):
>?7 Adds two rational numbers x,y
Returns: A rational number ’7°

nx, dx numer (x), denom(x)
ny, dy numer (y), denom(y)
return rational(nx * dy + ny * dx, dxx*xdy)

Comp 201 Forman Christian University 22 /58

Rational Numbers: You Try!

def mul_rationals(x, y):
>?? Multiplies two rational numbers x,y

Returns: A rational number ’7°

def print_rational(x):

’>22 Prints a rational number as n/d ’°°

def rationals_are_equal(x, y):
?72 (Checks if two rational numbers are

)))

equal

Comp 201 Forman Christian University

23/58

Rational Numbers

1 def add_rationals(x, y):
2+ def mul_ratiomnals(x, y):
5 return rational (numer (x)*numer (y), denom(x)*denom(y))

7 def print_rational (x):
8 print (numer(x), ’/’, denom(x))

10 def rationals_are_equal(x, y):
1 return numer (x) * denom(y) == numer(y) * denom(x)

Comp 201 Forman Christian University 24 /58

Rational Numbers

Data Abstraction: separation of
@ how data is manipulated v/

» rational, numer, denom
- add_rationals, mul rationals, print rational,
rationals_are_equal

Comp 201 Forman Christian University 25 /58

Rational Numbers

Data Abstraction: separation of
@ how data is manipulated v/

» rational, numer, denom
- add_rationals, mul rationals, print rational,
rationals_are_equal

@ how data is represented <«

Comp 201 Forman Christian University 25 /58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(mn, d):
return [n, d]

def numer (x):
return x[0]

def denom(x):
return x[1]

Comp 201 Forman Christian University 26 /58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d): numer denom
return [n, d]
def numer (x):
return x[0] [n éi}
def denom(x):
return x[1]

rational

Comp 201 Forman Christian University 26 /58

Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d): numer denom
return [n, 4]
def numer (x):
return x[0] [n éi}
def denom(x):
return x[1] rational

Only way to access the data is through accessors
Forman Christian University 26/58

Rational Numbers

>>> half = rational(1l, 2)
>>> print_rational (half)
1/ 2

Comp 201 Forman Christian University 27 /58

Rational Numbers

>>> half = rational(1l, 2)
>>> print_rational (half)
1/ 2

>>> third = rational(1l, 3)

>>> print_rational (mul_rationals (half, third))
1/ 6

Comp 201 Forman Christian University 27 /58

Rational Numbers

>>> half = rational(1l, 2)
>>> print_rational (half)
1/ 2

>>> third = ratiomnal (1, 3)
>>> print_rational (mul_rationals (half, third))

1/ 6

>>> print_rational(add_rationals (third, third))
6 / 9

Comp 201 Forman Christian University 27 /58

Rational Numbers

>>> half = rational(1l, 2)
>>> print_rational (half)
1/ 2

>>> third = ratiomnal (1, 3)
>>> print_rational (mul_rationals (half, third))
1/ 6

>>> print_rational(add_rationals (third, third))
6 / 9

Some rationals are not in simplest form
T e e

Rational Numbers

Converting to simplest form:

from fractions import gcd
def ratiomnal(n, 4d):

g = gcd(n, d)

return (n//g, d//g)

Comp 201 Forman Christian University 28 /58

Rational Numbers
Converting to simplest form:

from fractions import gcd
def ratiomnal(n, 4d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))
2/ 3

Comp 201 Forman Christian University 28 /58

Rational Numbers
Converting to simplest form:

from fractions import gcd
def ratiomnal(n, 4d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))
2/ 3 ZERO change required elsewhere

Comp 201 Forman Christian University 28 /58

Abstraction Barriers

Parts of the program that... Treat rationals as... Using only...

Use rational numbers to perform whole data values add_rational, mul_rational,

computation rationals_are_equal, print_rational
Create rationals or implement numerators and rational, numer, denom

rational operations denominators

Implement selectors and two-element lists list literals and element selection

constructor for rationals

Each function in last column enforce an abstraction barrier

Comp 201 Forman Christian University 29 /58

Abstraction Barriers

mul

print
add equal

T |
(11 A
numer denom

n d

rational

\ J

Comp 201 Forman Christian University 30/58

Big ldea

Abstraction Barrier Violation happens
when a higher-level function is bypassed to
use lower-level implementation details.

Comp 201 Forman Christian University 31/58

Abstraction Barrier Violation:

def square_rational (x):
return mul_rational(x, x)

Comp 201 Forman Christian University 32/58

Abstraction Barrier Violation:

def square_rational (x):
return mul_rational(x, x)

def square_rational_violating_once(x):
return rational (numer (x)*numer (x), denom(x)*denom(x))

Comp 201 Forman Christian University 32/58

Abstraction Barrier Violation:

def square_rational (x):
return mul_rational(x, x)

def square_rational_violating_once(x):
return rational (numer (x)*numer (x), denom(x)*denom(x))

def square_rational_violating_twice(x):
return [x[0] * x[0], x[1] * x[1]]

Comp 201 Forman Christian University 32/58

Abstraction Barrier Violation

o Only accessors and constructors
should access n,d directly

numer denom

nd

rational

Comp 201 Forman Christian University 33/58

Abstraction Barrier Violation

o Only accessors and constructors
should access n,d directly

mul

o These operations should not
access n,d directly

print
add equal

11
L]
numer denom

nd

rational

Comp 201 Forman Christian University 33/58

Abstraction Barrier Violation

square o Only accessors and constructors
H should access n,d directly

mul

print o These operations should not
add equal access n,d directly

numer denom o square should only access
— rational numbers through add,
n d mul, equal, print

rational

Comp 201 Forman Christian University 33/58

Abstraction Barrier Violation

square_once

square

mul

rint
add P

equal

11
L]
numer denom

nd

rational

Comp 201

e Abstraction barrier violated Once
(Higher-level functions bypassed)
def sq_violate_once(x):
return rational (

numer (x) *numer (x)
denom (x) *denom (x)

Forman Christian University

B

)

34/58

Abstraction Barrier Violation

square_twice

square_once e Abstraction barrier violated Once

square (Higher-level functions bypassed)
! def sq_violate_once(x):
mul return rational(
print numer (x) *numer (x) ,
add equal denom (x) *denom (x))

numer denom o Abstraction barrier violated Twice

nd

rational

def sq_violate_twice(x):
return [x[0]*x[0],
x[11*x[1]]

Comp 201 Forman Christian University 34 /58

You Try!

Right now our rational numbers are internally represented as
lists.

@ Change the internal representation to a dictionary.

@ What portion of the entire program really needed to change?

Comp 201 Forman Christian University 35/58

The Power of Abstraction

Changing the representation of rational numbers requires no
changes to any other parts of code:

def ratiomal(n, d):

return {"numerator":n, "denominator":d}
def numer (x):

return x["numerator']
def denom(x):

return x["denominator"]

Comp 201 Forman Christian University 36/58

You Try!

Suppose we need to use Point in our game. Spot
Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

e p = [1,2]

Comp 201 Forman Christian University 37/58

You Try!

Suppose we need to use Point in our game. Spot
Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

® p = [1,2] # use a Constructor! make point(x,y)

Comp 201 Forman Christian University 37/58

You Try!

Suppose we need to use Point in our game. Spot
Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

® p = [1,2] # use a Constructor! make point(x,y)

@ p = make point(3,4)

y = pl1]

Comp 201 Forman Christian University 37/58

You Try!

Suppose we need to use Point in our game. Spot
Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

® p = [1,2] # use a Constructor! make point(x,y)

@ p = make point(3,4)
y = p[1] # 1 level violated. Use accessors

y = get.y(p)
Forman Christian University 37/58

You Try!

Suppose we need to use Point in our game. Spot
Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

def distance(pl, p2):
return ((pl[0]-p2[0]) **2 +
(pl[1]-p2[1]) **2) **0.5

Comp 201 Forman Christian University 38/58

You Try I (solution)

® One level violated

- Bypassing the higher-level functions (accessors)
- Directly accessing internal data (very bad)

def distance(pl, p2):
return ((get_x(pl) - get_x(p2))**x2 +
(get_y(pl) - get_y(p2))**x2)*%x0.5

Comp 201 Forman Christian University 39/58

You Try!

Check if a point is within a circle:

Comp 201 Forman Christian University 40/58

You Try!

Check if a point is within a circle. ldentify Abstraction
Barrier Violations:

def is_within_circle(point,center ,radius):
dist = ((center [0] - point [0]) **2 +
(center [1] - point[1]) **2)**0.5

return dist <= radius

Comp 201 Forman Christian University 41/58

You Try! is_within_circle

171
distance

1 |
e 17)

get_x get_y
—
XYy

\ make_point)

\. J

oy < =» «=» = Wac

Comp 201

You Try!

Solution:

def is_within_circle(point,center ,radius):
return distance(point,center) <= radius

Comp 201 Forman Christian University 43 /58

Circle class

., class Point:

. class Circle:

. def __init_ (self X,y,radius):

: iself.x = X Abstraction violation

‘ self.y =y could've used 'Point’ class
’ self .radius = radius

Comp 201 Forman Christian University 44 /58

Circle class

X
., class Point: —

2 Ce radius

. class Circle:

. def __init__(self,center,radius):
5 self.center = center

6 self . radius = radius

Comp 201 Forman Christian University 45 /58

Encapsulation

o = = E T 9Dacn

Comp 201

Comp 201

Abstraction

v/

is_within_circle

1}
distance

make_point

Comp 201

Abstraction

is_within_circle

v/

1}
distance

make_point

a

Encapsulation

is_within_circle

v/

1}
distance

f

\

did

* Y

make_point

get_y

Python is NOT Great at Encapsulation

. class Person:

2 def __init__(self, name):
3 self .name = name
s p = Person(’Zain’)

Comp 201 Forman Christian University 48 /58

Python is NOT Great at Encapsulation

. class Person:

2 def __init__(self, name):

3 self .name = name

s p = Person(’Zain’)

s print (p.name) # access data from outside

Comp 201 Forman Christian University 48 /58

Python is NOT Great at Encapsulation

. class Person:
2 def init__(self, name):

3 self .name = name
s p = Person(’Zain’)

s print (p.name) # access data from outside
7 p.name = ’Ali’ # change data from outside

Comp 201 Forman Christian University 48 /58

Python is NOT Great at Encapsulation

. class Person:
2 def init__(self, name):

3 self .name = name

s p = Person(’Zain’)

s print (p.name) # access data from outside
7 p.name = ’Ali’ # change data from outside
s p.age = 20 # add new data from outside

Comp 201 Forman Christian University 48 /58

Python is NOT Great at Encapsulation

. class Person:

2 def __init__(self, name):

3 self .name = name

y

s p = Person(’Zain’) Frames Objects

s print (p.name) Global frame person class

7 p .name = ’Ali’ Person |« —init__ m_n?rzoint_(self. name)

p
8 Person instance

name | "Ali"

Comp 201 Forman Christian University 49 /58

Python is NOT Great at Encapsulation

. class Person:

2 def __init__(self, name):
3 self .name = name
.
s p = Person(’Zain’) Frames Objects
s print (p.name) Global frame Person class
7 p.name = >A1i”° Person |« —init__ m_n?rzoint_(self. name)
s p.age = 20 pk\\\\Mmmmﬁ
age |20
name | "Ali"

Comp 201 Forman Christian University 49 /58

Classes and Objects

o F = = £ DAl

Comp 201

Class: A Blueprint

o A class is a blueprint/template for creating objects

Comp 201 Forman Christian University 51/58

Class: A Blueprint

o A class is a blueprint/template for creating objects

o An object is an instance of a class

Comp 201 Forman Christian University 51/58

Class: A Blueprint

o A class is a blueprint/template for creating objects

o An object is an instance of a class
o Analogy:

. Class = Cookie Cutter
- Object = Cookie

Comp 201 Forman Christian University 51/58

Class: A Blueprint

o A class is a blueprint/template for creating objects

o An object is an instance of a class
o Analogy:

. Class = Cookie Cutter
- Object = Cookie

One class - Many objects (each with its own data)

Comp 201 Forman Christian University 51 /58

class Point:

Creating Objects using
The ‘Class’ Syntax

© 0 N o U A W N =

T
N~ o a0~ W N = O

[m] = =

Comp 201

1ge! e
KW s naf™

Creating Objects using

The ‘Class’ Syntax

© 0 N o U A W N =

T
N~ o a0~ W N = O

[m] = =

Comp 201

class Point:

Creating Objects using
The ‘Class’ Syntax

© 0 N o U A W N =

e i < e =
o A W N~ O

pl = Point (1, 2)

=
~ o

[m] = =

Comp 201

class Point:

Creating Objects using
The ‘Class’ Syntax

© 0 N o U A W N =

<self>

=
N R O

=
B oW

pl = Point (1, 2)

=R e
~ o o«

[m] = = =

Comp 201

it
«

0
€

1

2 tor

3 class Point: COnStrUC . . .
s def _linit__(self, x, y)i) Creating Objects using
©o self.x = ox | The ‘Class’ Syntax
6 \ self.y =y)
PonLEREERY R Y

8

9 <self>

10

11

12

13

14

15 pl = Point (1, 2)

16

17

Comp 201 Forman Christian University 52/58

class Point: 1

v
def __init__(self), x, y):
X

self.x =

Creating Objects using

© 0 N o U A W N =

T
N~ o a0~ W N = O

The ‘Class’ Syntax

self.y =y
<self> pl
x -1
y =2
pl = Point (1, 2)
[m] = = =

Comp 201

1

2

3 class Point: . . .
s def __init__(self, x, y): Creating Objects using
° self.x = x . erface The ‘Class’ Syntax

6 self.y = y ublic 1

7 T e e N

8 3 def get_x(self): :

9 | return self.x | <self> pl

10 'def get_y(self): 1 x —»1

1 | return self.y i y =2

12 'def print(self): \

3 print (£’ ({self.x}, {self.y})’):

14 i /‘

15 pl = Point (1, 2)

=
~N o

Comp 201 Forman Christian University 52/58

class Point:

1

2

3 - - -
¢« def __init__(self, x, y): Creating Objects using
i self.x = x The ‘Class’ Syntax

6 self.y = y

7

8 def get_x(self):

0 return self.x The first parameter is <self> p1

10 def get_y(@gffo: always ‘self’ x —1

1 return séifiy y =2

def print(@ﬁiﬂ):
print (£’ ({self.x}, {self.y})’)

-
N

P
o A~ W

pl = Point (1, 2)

=
~N o

Comp 201 Forman Christian University 52/58

class Point:

def __init__(self, x, y): Creating Objects using

© 0 N o U A W N =

self.x = x The ‘Class’ Syntax
self.y = y
def get_x(@gfﬂ): -
return self.x ‘self’ is passed auto- <self> pl
10 def get_y(self): | matically by Python x — 1
11 return self.y y =2

-
N

def print(@ﬁiﬂ):
print (£’ ({self.x}, {self.y})’)

[
w

=
a

pl = Point (1, 2)

=
~N o

Comp 201 Forman Christian University 52/58

class Point:

def __init__(self, x, y): Creating Objects using

© 0 N o U A W N =

self.x = x The ‘Class’ Syntax
self.y = y
def get_x(self):
return self.x <self> pl
10 def get_y(self): x =1
11 return self.y y =2

-
N

def print(self):
print (£’ ({self.x}, {self.y})’)

[
w

=
a

pl = Point (1, 2)
pl.print () Accessing attributes us-
ing the dot notation

Comp 201 Forman Christian University 52/58

=
~N o

class Point:

def __init__(self, x, y): Creating Objects using

© 0 N o U A W N =

self.x = x The ‘Class’ Syntax
self.y = y
def get_x(self):
return self.x <self> pl
10 def get_y(self): x =1
11 return self.y y =2

-
N

def print(self):
print (£’ ({self.x}, {self.y})’)

[
w

=
a

pl = Point (1, 2) - .
pl.print () <obj>.<attribute>
note: no parameters passes

Comp 201 Forman Christian University 52/58

=
~N o

class Point: . . .
def __init__(self, x, y): Creating Objects using
self.x = x The ‘Class’ Syntax
self.y =y

def get_x(self):

return self.x <self> pl
def get_y(self): x =1
return self.y.\

PR y =2
def print(self):
print (£’ ({self.x}, {self.y})’)

© 0 N o U A W N =

=
N R O

=
B oW

= Point (1, 2)

pl
. print O)

=R e
N~ o o

Comp 201 Forman Christian University 52/58

Big ldea

The init () method is invoked
automatically when an object is created.

Comp 201 Forman Christian University 53/58

Big ldea

The self parameter is the object which
invokes the method using the dot operator.

Comp 201 Forman Christian University 54 /58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):
3 self.x = x

4 self.y =y

5

6 def get_x(self):

7 return self.x

10
11
12
13

14
[m] = = =

Comp 201

it
«

0
€

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):
3 self.x = x

4 self.y =y

5

6 def get_x(self):

7 return self.x

©

pl = Point (1, 2)
10
11
12
13

14

Comp 201 Forman Christian University 55/58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y): <self>: p1
3 self .x = x fx -1

4 self .y =y ! y -2

5

6 def get_x(self):

7 return self.x

©

pl = Point (1, 2)
10
11
12
13

14

Comp 201 Forman Christian University 55/58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y): <self>: p1
3 self .x = x x > 1

4 self.y =y y -2

5

6 def get_x(self):

7 return self.x

pl = Point (1, 2)

©

10
11
12
13

14
[m] = - =

Comp 201

it
«
€

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y): <self>: pl
3 self .x = x x =1
4 self .y =y y -2

6 def get_x(self):
7 return self.x

o pl = Point (1, 2)
10 print(pl.x)
11
12
13

14

Comp 201 Forman Christian University 55/58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y): <self>: pl
3 self .x = x x =3
4 self .y =y y -2

6 def get_x(self):
7 return self.x

s pl = Point (1, 2)
print (pl.x)
u pl.x = 3

=
o

12
13

14

Comp 201 Forman Christian University 55/58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):
3 self.x = x

4 self.y =y

5

6 def get_x(self):

7 return self.x

o pl = Point (1, 2)
10 print(pl.x)

u pl.x = 3

12 p2 = Point (4, 5)
13

14

Comp 201

<self>: pl

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def __init__(self, x, y): <self>: pi
self.x = x x =3
self.y =y y =2
def get_x(self):
return self.x <self>: p2
' x =>4
pl = Point (1, 2) vy >5

print (pl.x)

pl.x = 3
p2 = Point (4, 5)

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def __init__(self, x, y): <self>: pi
self.x = x x =3
self.y =y y =2
def get_x(self):
return self.x <self>: p2
' x =>4
pl = Point (1, 2) vy >5

print (pl.x)

pl.x = 3
p2 = Point (4, 5)

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def __init__(self, x, y):

self.x = x
self.y y

def get_x(self):
return self.x

pl = Point (1, 2)
print (pl.x)

pl.x = 3

p2 = Point (4, 5)
print (p2.get_x())

<self>:

pl

x —3

y —>2

<self>:

p2

x =>4
y =5

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def __init__(self, x, y):

self.x = x
self.y y

def get_x(self):
return self.x

pl = Point (1, 2)
print (pl.x)

pl.x = 3

p2 = Point (4, 5)
print (. get_x())

<self>:

pl

x —3

y —>2

<self>:

p2

x =>4
y =5

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:
def __init__(self, x, y):
self.x = x
self.y y

T T 3. p
def get_x(self):

return self.x

pl = Point (1, 2)
print (pl.x)

pl.x = 3

p2 = Point (4, 5)
print (\.g\et;(\))

<self>:

pl

x —3

y —>2

<self>:

p2

x =>4
y =5

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def

def

return self.x\ <self>:
x =>4
pl = Point (1, 2)

__init__(self, x, y): <self>: pl
self.x = x x —»3
self.y =y y -2
N
get_x(._s_e_l_fl.):
p2

y —>5

print (pl.x)

pl.x =

3

p2 = Point (4, 5)
print (.get_x())
N %

Comp 201

Forman Christian University

55 /58

Creating Multiple Objects

1

10

11

12

13

14

class Point:

def __init__(self, x, y):

self.x = x
self.y y

def get_x(self):
return self.x

pl = Point (1, 2)
print (pl.x)

pl.x = 3

p2 = Point (4, 5)
print (p2.get_x())

print ())

Comp 201

<self>:

pl

x —3

y —>2

<self>:

p2

x =>4
y =5

Forman Christian University

55 /58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):
3 self.x = x

4 self.y =y

5 ____\pl

6 def get_x(self):

7 return self.x

o pl = Point (1, 2)
10 print(pl.x)

u pl.x = 3

12 p2 = Point (4, 5)
3 print(p2.get_x())

14 print ())

Comp 201

<self>: pl

: p2

Forman Christian University

55 /58

Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y): <self>: pl
3 self.x = x x =3
4 self.y =y y -2
5
6 def get_x(self):
7 return self.x <self>: p2
8 x =>4
1 = Point (1, 2
©P oint () Observe: y =5

0 print(pl.x) Methods have one copy.

n pl.x = 3 They are shared between

2 p2 = Point (4, 5) different objects. Hence the
13 print(p2.get_x()) | self parameter
1 print(pl.get_x())

Comp 201

Forman Christian University

55 /58

Big ldea

The methods are created only once.
Different objects share the same methods
by passing themselves as ‘self’.

Comp 201 Forman Christian University 56 /58

You Try!

o Create a class Rectangle with attributes 1length and
width.

o Add methods to calculate the area and perimeter of the
rectangle.

o Create two rectangle objects and test the methods.

Comp 201 Forman Christian University 57 /58

Questions?

Comp 201 Forman Christian University 58 /58

	Course Information
	What is OOP?
	Data Abstraction
	Encapsulation
	Classes and Objects

