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Grading Breakdown

Component Percentage

Assignments/Project 15%

Labs 10%

Quizzes 15%

Mid 25%

Final 35%

Total 100%
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Today’s Agenda

1 What is OOP?
2 Classes and Objects
3 Encapsulation
4 Data Abstraction
5 Composition
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What is OOP?
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Object Oriented Programming

OOP is a method of software design and programming
▸ revolve around the concept of objects

OOP but using pure C:
▸ Linux Kernel
▸ GTK+
▸ Doom

Set of programming practices (language, syntax

independent)
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The Object Metaphor

Objects:
1 are like black boxes

2 have state (data) and behavior (methods)
3 have unique identities
4 can interact with each other by sending messages
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OOP vs Procedural Programming

Procedural

Focus on functions

Data and functions are separate

Top-down approach

Hard to manage large programs

Example: C, early Python scripts

Object-Oriented

Focus on objects

Data and functions bundled
together

Bottom-up approach

Easier to manage complexity

Example: Python classes, Java
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Object-Oriented Programming (OOP)

What is OOP?

A programming paradigm focused on objects - combining data and behavior to model
real-world systems.

Encapsulation - Combine data and methods

Abstraction - Hide internal complexity

Inheritance - Reuse and extend classes

Polymorphism - One interface, many behaviors

Design principles for clean, reusable code
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Data Abstraction
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Abstraction

Hiding the details, showing only the necessary

Expressions:

1 pi = 355/113

2 area = pi * (R**2)

3 circ = 2 * pi * R

Functions:

1 def add(x,y):

2 return x+y

3 add(1,2)

4 add(4,5)

add
1 2

3

(multiple) inputs

output
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Compound Data

Many things in reality are made of compund data

(non-scalar)

Try to Identify components of each:

▸ Vector →

▸ Student →

▸ Rational →

▸ Book →
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Compound Data

Many things in reality are made of compund data

(non-scalar)

Try to Identify components of each:

▸ Vector → x,y,z

▸ Student → name, rollno, gpa

▸ Rational → num, denom

▸ Book → title, author, price
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Data Abstraction

We want to do the same with data that we did with code

Put individual components (data) in a black box

return x*x

def square(x): Vector

x = 1
y = 0
z = 0

Code Abstraction Data Abstraction
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Example:

x

y

a⃗

⃗b

(1,1)

(3,3)

From high school math:

c⃗ = a⃗ + ⃗b

⃗d = a⃗ − ⃗b

We’re treating a⃗ and ⃗b as

black boxes

Not concerned with their

internal details
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Big Idea

Data Abstraction:
Seperating how data is represented from how it is

manipulated
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Example: Rational Numbers

Have the form: numerator
denominator

A rational 1/3 can’t be represented exactly on a

computer:

>>> 1/3

0.3333333333333333

>>> 1/3 == 0.333333333333333300000

True
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Rational Numbers

But can represent exactly as compound data (non-scalar)

Imagine the following functions (again, black boxes):

rational(n,d) # constructor , returns rational

numer(x) # accessor function

denom(x) # accessor function
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Rational Numbers

So far we have three functions:

rational(n,d) numer(x) denom(x)

No idea how these functions are implemented

No idea how a rational number stores numerator and

denominator

But we can still use these as black boxes to build more

complex functions
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Rational Numbers

Adding two rational numbers:

1

2
+

2

3
=

3 × 1 + 2 × 2

2 × 3
=

7

6

Complete the following function:

def add_rationals(x, y):

’’’ Adds two rational numbers x,y

Returns: A rational number ’’’
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Rational Numbers

Solution:

def add_rationals(x, y):

’’’ Adds two rational numbers x,y

Returns: A rational number ’’’

nx , dx = numer(x), denom(x)

ny , dy = numer(y), denom(y)

return rational(nx * dy + ny * dx, dx*dy)

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 22 / 58



Rational Numbers: You Try!

def mul_rationals(x, y):

’’’ Multiplies two rational numbers x,y

Returns: A rational number ’’’

def print_rational(x):

’’’ Prints a rational number as n/d ’’’

def rationals_are_equal(x, y):

’’’ Checks if two rational numbers are

equal ’’’
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Rational Numbers

1 def add_rationals(x, y):

2 ...

3

4 def mul_rationals(x, y):

5 return rational(numer(x)*numer(y), denom(x)*denom(y))

6

7 def print_rational(x):

8 print(numer(x), ’/’, denom(x))

9

10 def rationals_are_equal(x, y):

11 return numer(x) * denom(y) == numer(y) * denom(x)
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Rational Numbers

Data Abstraction: separation of

1 how data is manipulated ✓

▸ rational, numer, denom
▸ add rationals, mul rationals, print rational,

rationals are equal

2 how data is represented ←
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Representing Rational Numbers

You can use a tuple or a list to store n,d:

def rational(n, d):

return [n, d]

def numer(x):

return x[0]

def denom(x):

return x[1]

n d

numer

rational

denom

Only way to access the data is through accessors
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Rational Numbers

>>> half = rational(1, 2)

>>> print_rational(half)

1 / 2

>>> third = rational(1, 3)

>>> print_rational(mul_rationals(half , third))

1 / 6

>>> print_rational(add_rationals(third , third))

6 / 9

Some rationals are not in simplest form
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Rational Numbers
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Rational Numbers

Converting to simplest form:

from fractions import gcd

def rational(n, d):

g = gcd(n, d)

return (n//g, d//g)

>>> print rational(add rationals(third, third))

2 / 3 ZERO change required elsewhere
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Abstraction Barriers

Each function in last column enforce an abstraction barrier
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Abstraction Barriers

n d

numer

rational

denom

add

mul

print
equal
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Big Idea

Abstraction Barrier Violation happens
when a higher-level function is bypassed to
use lower-level implementation details.
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Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58



Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58



Abstraction Barrier Violation:

def square_rational(x):

return mul_rational(x, x)

def square_rational_violating_once(x):

return rational(numer(x)*numer(x), denom(x)*denom(x))

def square_rational_violating_twice(x):

return [x[0] * x[0], x[1] * x[1]]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 32 / 58



Abstraction Barrier Violation

n d

numer

rational

denom

Only accessors and constructors
should access n,d directly

These operations should not
access n,d directly

square should only access
rational numbers through add,
mul, equal, print
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Abstraction Barrier Violation

n d

numer

rational

denom

add

mul

print
equal

square
square_once Abstraction barrier violated Once

(Higher-level functions bypassed)

def sq_violate_once(x):

return rational(

numer(x)*numer(x),

denom(x)*denom(x) )

Abstraction barrier violated Twice

def sq_violate_twice(x):

return [x[0]*x[0],

x[1]*x[1]]
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You Try!

Right now our rational numbers are internally represented as

lists.
1 Change the internal representation to a dictionary.
2 What portion of the entire program really needed to change?
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The Power of Abstraction

Changing the representation of rational numbers requires no
changes to any other parts of code:

def rational(n, d):

return {"numerator":n, "denominator":d}

def numer(x):

return x["numerator"]

def denom(x):

return x["denominator"]

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 36 / 58



You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2]

2 p = make point(3,4)

y = p[1]
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Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

1 p = [1,2] # use a Constructor! make point(x,y)

2 p = make point(3,4)

y = p[1] # 1st level violated. Use accessors
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You Try!

Suppose we need to use Point in our game. Spot

Abstraction Barrier Violations, How many Barriers
Violated. Suggest how to fix them:

def distance(p1, p2):

return ((p1[0]-p2[0]) **2 +

(p1[1]-p2[1]) **2) **0.5
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You Try! (solution)

1 One level violated
▸ Bypassing the higher-level functions (accessors)
▸ Directly accessing internal data (very bad)

def distance(p1, p2):

return ((get_x(p1) - get_x(p2))**2 +

(get_y(p1) - get_y(p2))**2) **0.5
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You Try!

Check if a point is within a circle:

C

p

ra
diu
s

distance
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You Try!

Check if a point is within a circle. Identify Abstraction
Barrier Violations:

def is_within_circle(point ,center ,radius):

dist = (( center [0] - point [0]) **2 +

(center [1] - point [1]) **2) **0.5

return dist <= radius
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You Try!

x y

get_x

make_point

get_y

distance

is_within_circle

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 42 / 58



You Try!

Solution:

def is_within_circle(point ,center ,radius):

return distance(point ,center) <= radius
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Circle class

1 class Point:

2 ...

3 class Circle:

4 def __init__(self ,x,y,radius):

5 self.x = x

6 self.y = y

7 self.radius = radius

C

p

ra
diu
s

distance

Abstraction violation
could’ve used ‘Point’ class
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Circle class

1 class Point:

2 ...

3 class Circle:

4 def __init__(self ,center ,radius):

5 self.center = center

6 self.radius = radius

radius

x,y
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Encapsulation
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Abstraction

x y

get_x

make_point

get_y

distance

is_within_circle

Encapsulation

x y

get_x

make_point

get_y

distance

is_within_circle

Can't get in
:'-(
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Python is NOT Great at Encapsulation

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 p = Person(’Zain’)

6 print(p.name) # access data from outside

7 p.name = ’Ali’ # change data from outside

8 p.age = 20 # add new data from outside
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Classes and Objects
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Class: A Blueprint

A class is a blueprint/template for creating objects

An object is an instance of a class
Analogy:

▸ Class = Cookie Cutter
▸ Object = Cookie

One class → Many objects (each with its own data)
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1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax
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Creating Objects using
The ‘Class’ Syntax

keyw
ord

class
name

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58



1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58



1

2

3 class Point:

4 def __init__(self, x, y):

5 self.x = x

6 self.y = y

7

8 def get_x(self):

9 return self.x

10 def get_y(self):

11 return self.y

12 def print(self):

13 print(f’({self.x}, {self.y})’)

14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
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<self>
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const
ructo

r

<self>
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<self>
x → 1
y → 2

p1

p1
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Creating Objects using
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publi
c interf

ace

<self>
x → 1
y → 2

p1
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1

2
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14
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Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1The first parameter is
always ‘self’
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3 class Point:
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14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1‘self’ is passed auto-
matically by Python

Comp 201 Programming 2: OOP (Lecture 1) Classes, Objects, Encapsulation & AbstractionForman Christian University 52 / 58



1

2

3 class Point:
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14

15 p1 = Point(1, 2)

16 p1.print ()

17 p1.get_x ()

Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

Accessing attributes us-
ing the dot notation
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Creating Objects using
The ‘Class’ Syntax

<self>
x → 1
y → 2

p1

<obj>.<attribute>
note: no parameters passes
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Big Idea

The init () method is invoked
automatically when an object is created.
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Big Idea

The self parameter is the object which
invokes the method using the dot operator.
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Creating Multiple Objects

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def get_x(self):

7 return self.x

8

9 p1 = Point(1, 2)

10 print(p1.x)

11 p1.x = 3

12 p2 = Point(4, 5)

13 print(p2.get_x())

14 print(p1.get_x())
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<self>: p1

x → 3
y → 2

<self>: p2

x → 4
y → 5Observe:

Methods have one copy.
They are shared between
different objects. Hence the
‘ self’ parameter
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Big Idea

The methods are created only once.
Different objects share the same methods

by passing themselves as ‘self’.
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You Try!

Create a class Rectangle with attributes length and

width.

Add methods to calculate the area and perimeter of the

rectangle.

Create two rectangle objects and test the methods.
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Questions?
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